Properties

Label 15.2
Level 15
Weight 2
Dimension 1
Nonzero newspaces 1
Newforms 1
Sturm bound 32
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 1 \)
Newforms: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(15))\).

Total New Old
Modular forms 16 9 7
Cusp forms 1 1 0
Eisenstein series 15 8 7

Trace form

\(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut -\mathstrut q^{10} \) \(\mathstrut -\mathstrut 4q^{11} \) \(\mathstrut +\mathstrut q^{12} \) \(\mathstrut -\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut q^{15} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut +\mathstrut 2q^{17} \) \(\mathstrut -\mathstrut q^{18} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut -\mathstrut q^{20} \) \(\mathstrut +\mathstrut 4q^{22} \) \(\mathstrut -\mathstrut 3q^{24} \) \(\mathstrut +\mathstrut q^{25} \) \(\mathstrut +\mathstrut 2q^{26} \) \(\mathstrut -\mathstrut q^{27} \) \(\mathstrut -\mathstrut 2q^{29} \) \(\mathstrut +\mathstrut q^{30} \) \(\mathstrut -\mathstrut 5q^{32} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut q^{36} \) \(\mathstrut -\mathstrut 10q^{37} \) \(\mathstrut -\mathstrut 4q^{38} \) \(\mathstrut +\mathstrut 2q^{39} \) \(\mathstrut +\mathstrut 3q^{40} \) \(\mathstrut +\mathstrut 10q^{41} \) \(\mathstrut +\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut 4q^{44} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut +\mathstrut q^{48} \) \(\mathstrut -\mathstrut 7q^{49} \) \(\mathstrut -\mathstrut q^{50} \) \(\mathstrut -\mathstrut 2q^{51} \) \(\mathstrut +\mathstrut 2q^{52} \) \(\mathstrut -\mathstrut 10q^{53} \) \(\mathstrut +\mathstrut q^{54} \) \(\mathstrut -\mathstrut 4q^{55} \) \(\mathstrut -\mathstrut 4q^{57} \) \(\mathstrut +\mathstrut 2q^{58} \) \(\mathstrut -\mathstrut 4q^{59} \) \(\mathstrut +\mathstrut q^{60} \) \(\mathstrut -\mathstrut 2q^{61} \) \(\mathstrut +\mathstrut 7q^{64} \) \(\mathstrut -\mathstrut 2q^{65} \) \(\mathstrut -\mathstrut 4q^{66} \) \(\mathstrut +\mathstrut 12q^{67} \) \(\mathstrut -\mathstrut 2q^{68} \) \(\mathstrut -\mathstrut 8q^{71} \) \(\mathstrut +\mathstrut 3q^{72} \) \(\mathstrut +\mathstrut 10q^{73} \) \(\mathstrut +\mathstrut 10q^{74} \) \(\mathstrut -\mathstrut q^{75} \) \(\mathstrut -\mathstrut 4q^{76} \) \(\mathstrut -\mathstrut 2q^{78} \) \(\mathstrut -\mathstrut q^{80} \) \(\mathstrut +\mathstrut q^{81} \) \(\mathstrut -\mathstrut 10q^{82} \) \(\mathstrut +\mathstrut 12q^{83} \) \(\mathstrut +\mathstrut 2q^{85} \) \(\mathstrut -\mathstrut 4q^{86} \) \(\mathstrut +\mathstrut 2q^{87} \) \(\mathstrut -\mathstrut 12q^{88} \) \(\mathstrut -\mathstrut 6q^{89} \) \(\mathstrut -\mathstrut q^{90} \) \(\mathstrut -\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 4q^{95} \) \(\mathstrut +\mathstrut 5q^{96} \) \(\mathstrut +\mathstrut 2q^{97} \) \(\mathstrut +\mathstrut 7q^{98} \) \(\mathstrut -\mathstrut 4q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
15.2.a \(\chi_{15}(1, \cdot)\) 15.2.a.a 1 1
15.2.b \(\chi_{15}(4, \cdot)\) None 0 1
15.2.e \(\chi_{15}(2, \cdot)\) None 0 2