Properties

Label 148.1.f.a
Level 148
Weight 1
Character orbit 148.f
Analytic conductor 0.074
Analytic rank 0
Dimension 2
Projective image \(S_{4}\)
CM/RM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 148 = 2^{2} \cdot 37 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 148.f (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.0738616218697\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Projective image \(S_{4}\)
Projective field Galois closure of 4.0.202612.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\)  \(=\)  \( q\) \( + i q^{3} \) \(- q^{7}\) \(+O(q^{10})\) \( q\) \( + i q^{3} \) \(- q^{7}\) \( - i q^{11} \) \( + ( -1 - i ) q^{17} \) \( + ( 1 + i ) q^{19} \) \( - i q^{21} \) \( + ( -1 - i ) q^{23} \) \( - i q^{25} \) \( + i q^{27} \) \( + ( -1 + i ) q^{29} \) \(+ q^{33}\) \( + i q^{37} \) \( + i q^{41} \) \(+ q^{47}\) \( + ( 1 - i ) q^{51} \) \(+ q^{53}\) \( + ( -1 + i ) q^{57} \) \( + ( 1 - i ) q^{69} \) \(+ q^{71}\) \( + i q^{73} \) \(+ q^{75}\) \( + i q^{77} \) \( + ( -1 - i ) q^{79} \) \(- q^{81}\) \(- q^{83}\) \( + ( -1 - i ) q^{87} \) \( + ( -1 + i ) q^{89} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\)  \(=\)  \(2q \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 2q^{17} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut -\mathstrut 2q^{23} \) \(\mathstrut -\mathstrut 2q^{29} \) \(\mathstrut +\mathstrut 2q^{33} \) \(\mathstrut +\mathstrut 2q^{47} \) \(\mathstrut +\mathstrut 2q^{51} \) \(\mathstrut +\mathstrut 2q^{53} \) \(\mathstrut -\mathstrut 2q^{57} \) \(\mathstrut +\mathstrut 2q^{69} \) \(\mathstrut +\mathstrut 2q^{71} \) \(\mathstrut +\mathstrut 2q^{75} \) \(\mathstrut -\mathstrut 2q^{79} \) \(\mathstrut -\mathstrut 2q^{81} \) \(\mathstrut -\mathstrut 2q^{83} \) \(\mathstrut -\mathstrut 2q^{87} \) \(\mathstrut -\mathstrut 2q^{89} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/148\mathbb{Z}\right)^\times\).

\(n\) \(75\) \(113\)
\(\chi(n)\) \(1\) \(- i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
105.1
1.00000i
1.00000i
0 1.00000i 0 0 0 −1.00000 0 0 0
117.1 0 1.00000i 0 0 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
37.d Odd 1 yes

Hecke kernels

There are no other newforms in \(S_{1}^{\mathrm{new}}(148, \chi)\).