Properties

Label 14.10.a.a
Level 14
Weight 10
Character orbit 14.a
Self dual yes
Analytic conductor 7.211
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(7.21050170629\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 16q^{2} - 6q^{3} + 256q^{4} + 560q^{5} + 96q^{6} - 2401q^{7} - 4096q^{8} - 19647q^{9} + O(q^{10}) \) \( q - 16q^{2} - 6q^{3} + 256q^{4} + 560q^{5} + 96q^{6} - 2401q^{7} - 4096q^{8} - 19647q^{9} - 8960q^{10} - 54152q^{11} - 1536q^{12} - 113172q^{13} + 38416q^{14} - 3360q^{15} + 65536q^{16} + 6262q^{17} + 314352q^{18} + 257078q^{19} + 143360q^{20} + 14406q^{21} + 866432q^{22} - 266000q^{23} + 24576q^{24} - 1639525q^{25} + 1810752q^{26} + 235980q^{27} - 614656q^{28} + 1574714q^{29} + 53760q^{30} - 4637484q^{31} - 1048576q^{32} + 324912q^{33} - 100192q^{34} - 1344560q^{35} - 5029632q^{36} - 11946238q^{37} - 4113248q^{38} + 679032q^{39} - 2293760q^{40} + 21909126q^{41} - 230496q^{42} + 27520592q^{43} - 13862912q^{44} - 11002320q^{45} + 4256000q^{46} + 52927836q^{47} - 393216q^{48} + 5764801q^{49} + 26232400q^{50} - 37572q^{51} - 28972032q^{52} + 16221222q^{53} - 3775680q^{54} - 30325120q^{55} + 9834496q^{56} - 1542468q^{57} - 25195424q^{58} - 140509618q^{59} - 860160q^{60} - 202963560q^{61} + 74199744q^{62} + 47172447q^{63} + 16777216q^{64} - 63376320q^{65} - 5198592q^{66} + 153734572q^{67} + 1603072q^{68} + 1596000q^{69} + 21512960q^{70} + 279655936q^{71} + 80474112q^{72} - 404022830q^{73} + 191139808q^{74} + 9837150q^{75} + 65811968q^{76} + 130018952q^{77} - 10864512q^{78} - 130689816q^{79} + 36700160q^{80} + 385296021q^{81} - 350546016q^{82} + 420134014q^{83} + 3687936q^{84} + 3506720q^{85} - 440329472q^{86} - 9448284q^{87} + 221806592q^{88} - 469542390q^{89} + 176037120q^{90} + 271725972q^{91} - 68096000q^{92} + 27824904q^{93} - 846845376q^{94} + 143963680q^{95} + 6291456q^{96} - 872501690q^{97} - 92236816q^{98} + 1063924344q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−16.0000 −6.00000 256.000 560.000 96.0000 −2401.00 −4096.00 −19647.0 −8960.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.10.a.a 1
3.b odd 2 1 126.10.a.e 1
4.b odd 2 1 112.10.a.b 1
5.b even 2 1 350.10.a.c 1
5.c odd 4 2 350.10.c.b 2
7.b odd 2 1 98.10.a.a 1
7.c even 3 2 98.10.c.f 2
7.d odd 6 2 98.10.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.10.a.a 1 1.a even 1 1 trivial
98.10.a.a 1 7.b odd 2 1
98.10.c.e 2 7.d odd 6 2
98.10.c.f 2 7.c even 3 2
112.10.a.b 1 4.b odd 2 1
126.10.a.e 1 3.b odd 2 1
350.10.a.c 1 5.b even 2 1
350.10.c.b 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 6 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(14))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 16 T \)
$3$ \( 1 + 6 T + 19683 T^{2} \)
$5$ \( 1 - 560 T + 1953125 T^{2} \)
$7$ \( 1 + 2401 T \)
$11$ \( 1 + 54152 T + 2357947691 T^{2} \)
$13$ \( 1 + 113172 T + 10604499373 T^{2} \)
$17$ \( 1 - 6262 T + 118587876497 T^{2} \)
$19$ \( 1 - 257078 T + 322687697779 T^{2} \)
$23$ \( 1 + 266000 T + 1801152661463 T^{2} \)
$29$ \( 1 - 1574714 T + 14507145975869 T^{2} \)
$31$ \( 1 + 4637484 T + 26439622160671 T^{2} \)
$37$ \( 1 + 11946238 T + 129961739795077 T^{2} \)
$41$ \( 1 - 21909126 T + 327381934393961 T^{2} \)
$43$ \( 1 - 27520592 T + 502592611936843 T^{2} \)
$47$ \( 1 - 52927836 T + 1119130473102767 T^{2} \)
$53$ \( 1 - 16221222 T + 3299763591802133 T^{2} \)
$59$ \( 1 + 140509618 T + 8662995818654939 T^{2} \)
$61$ \( 1 + 202963560 T + 11694146092834141 T^{2} \)
$67$ \( 1 - 153734572 T + 27206534396294947 T^{2} \)
$71$ \( 1 - 279655936 T + 45848500718449031 T^{2} \)
$73$ \( 1 + 404022830 T + 58871586708267913 T^{2} \)
$79$ \( 1 + 130689816 T + 119851595982618319 T^{2} \)
$83$ \( 1 - 420134014 T + 186940255267540403 T^{2} \)
$89$ \( 1 + 469542390 T + 350356403707485209 T^{2} \)
$97$ \( 1 + 872501690 T + 760231058654565217 T^{2} \)
show more
show less