Properties

Label 137.2.a.a
Level 137137
Weight 22
Character orbit 137.a
Self dual yes
Analytic conductor 1.0941.094
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [137,2,Mod(1,137)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(137, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("137.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 137 137
Weight: k k == 2 2
Character orbit: [χ][\chi] == 137.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.093950507691.09395050769
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.725.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x33x2+x+1 x^{4} - x^{3} - 3x^{2} + x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q2+(β3β2β11)q3+(β2β1)q4+(2β3+β2)q5+(2β3+β2β1+1)q6+(β3+β13)q7++(3β3+β2+8β1+4)q99+O(q100) q + (\beta_1 - 1) q^{2} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{3} + (\beta_{2} - \beta_1) q^{4} + ( - 2 \beta_{3} + \beta_{2}) q^{5} + ( - 2 \beta_{3} + \beta_{2} - \beta_1 + 1) q^{6} + ( - \beta_{3} + \beta_1 - 3) q^{7}+ \cdots + ( - 3 \beta_{3} + \beta_{2} + 8 \beta_1 + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q3q25q3+q42q5+q613q73q8+5q95q10+q114q128q13+14q148q15q164q1710q19+13q20+11q21++20q99+O(q100) 4 q - 3 q^{2} - 5 q^{3} + q^{4} - 2 q^{5} + q^{6} - 13 q^{7} - 3 q^{8} + 5 q^{9} - 5 q^{10} + q^{11} - 4 q^{12} - 8 q^{13} + 14 q^{14} - 8 q^{15} - q^{16} - 4 q^{17} - 10 q^{19} + 13 q^{20} + 11 q^{21}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x33x2+x+1 x^{4} - x^{3} - 3x^{2} + x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν1 \nu^{2} - \nu - 1 Copy content Toggle raw display
β3\beta_{3}== ν3ν22ν+1 \nu^{3} - \nu^{2} - 2\nu + 1 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+1 \beta_{2} + \beta _1 + 1 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+3β1 \beta_{3} + \beta_{2} + 3\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.35567
−0.477260
0.737640
2.09529
−2.35567 −2.45589 3.54920 3.42960 5.78527 −3.73764 −3.64941 3.03138 −8.07901
1.2 −1.47726 1.39026 0.182297 −3.53103 −2.05377 −5.09529 2.68522 −1.06719 5.21625
1.3 −0.262360 −1.16215 −1.93117 0.0425409 0.304901 −1.64433 1.03138 −1.64941 −0.0111610
1.4 1.09529 −2.77222 −0.800331 −1.94111 −3.03640 −2.52274 −3.06719 4.68522 −2.12608
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
137137 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 137.2.a.a 4
3.b odd 2 1 1233.2.a.d 4
4.b odd 2 1 2192.2.a.j 4
5.b even 2 1 3425.2.a.b 4
7.b odd 2 1 6713.2.a.b 4
8.b even 2 1 8768.2.a.w 4
8.d odd 2 1 8768.2.a.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
137.2.a.a 4 1.a even 1 1 trivial
1233.2.a.d 4 3.b odd 2 1
2192.2.a.j 4 4.b odd 2 1
3425.2.a.b 4 5.b even 2 1
6713.2.a.b 4 7.b odd 2 1
8768.2.a.r 4 8.d odd 2 1
8768.2.a.w 4 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+3T234T21 T_{2}^{4} + 3T_{2}^{3} - 4T_{2} - 1 acting on S2new(Γ0(137))S_{2}^{\mathrm{new}}(\Gamma_0(137)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+3T3+1 T^{4} + 3 T^{3} + \cdots - 1 Copy content Toggle raw display
33 T4+5T3+11 T^{4} + 5 T^{3} + \cdots - 11 Copy content Toggle raw display
55 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T4+13T3++79 T^{4} + 13 T^{3} + \cdots + 79 Copy content Toggle raw display
1111 T4T3++101 T^{4} - T^{3} + \cdots + 101 Copy content Toggle raw display
1313 T4+8T3+101 T^{4} + 8 T^{3} + \cdots - 101 Copy content Toggle raw display
1717 T4+4T3++31 T^{4} + 4 T^{3} + \cdots + 31 Copy content Toggle raw display
1919 T4+10T3+431 T^{4} + 10 T^{3} + \cdots - 431 Copy content Toggle raw display
2323 T4+T3++121 T^{4} + T^{3} + \cdots + 121 Copy content Toggle raw display
2929 T411T3+551 T^{4} - 11 T^{3} + \cdots - 551 Copy content Toggle raw display
3131 T4+17T3+319 T^{4} + 17 T^{3} + \cdots - 319 Copy content Toggle raw display
3737 T4+4T3+191 T^{4} + 4 T^{3} + \cdots - 191 Copy content Toggle raw display
4141 T4+7T3+121 T^{4} + 7 T^{3} + \cdots - 121 Copy content Toggle raw display
4343 T4+13T3+191 T^{4} + 13 T^{3} + \cdots - 191 Copy content Toggle raw display
4747 T4+11T3+41 T^{4} + 11 T^{3} + \cdots - 41 Copy content Toggle raw display
5353 T4+2T3+1 T^{4} + 2 T^{3} + \cdots - 1 Copy content Toggle raw display
5959 T42T3+709 T^{4} - 2 T^{3} + \cdots - 709 Copy content Toggle raw display
6161 T47T3++11 T^{4} - 7 T^{3} + \cdots + 11 Copy content Toggle raw display
6767 T4+6T3++2831 T^{4} + 6 T^{3} + \cdots + 2831 Copy content Toggle raw display
7171 (T24T16)2 (T^{2} - 4 T - 16)^{2} Copy content Toggle raw display
7373 T4+27T3+10219 T^{4} + 27 T^{3} + \cdots - 10219 Copy content Toggle raw display
7979 T43T3++9329 T^{4} - 3 T^{3} + \cdots + 9329 Copy content Toggle raw display
8383 T4+3T3++6449 T^{4} + 3 T^{3} + \cdots + 6449 Copy content Toggle raw display
8989 (T27T+1)2 (T^{2} - 7 T + 1)^{2} Copy content Toggle raw display
9797 T4+7T3++211 T^{4} + 7 T^{3} + \cdots + 211 Copy content Toggle raw display
show more
show less