gp: [N,k,chi] = [137,2,Mod(1,137)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(137, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("137.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 3 x 2 + x + 1 x^{4} - x^{3} - 3x^{2} + x + 1 x 4 − x 3 − 3 x 2 + x + 1
x^4 - x^3 - 3*x^2 + x + 1
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − ν − 1 \nu^{2} - \nu - 1 ν 2 − ν − 1
v^2 - v - 1
β 3 \beta_{3} β 3 = = =
ν 3 − ν 2 − 2 ν + 1 \nu^{3} - \nu^{2} - 2\nu + 1 ν 3 − ν 2 − 2 ν + 1
v^3 - v^2 - 2*v + 1
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + β 1 + 1 \beta_{2} + \beta _1 + 1 β 2 + β 1 + 1
b2 + b1 + 1
ν 3 \nu^{3} ν 3 = = =
β 3 + β 2 + 3 β 1 \beta_{3} + \beta_{2} + 3\beta_1 β 3 + β 2 + 3 β 1
b3 + b2 + 3*b1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
137 137 1 3 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 + 3 T 2 3 − 4 T 2 − 1 T_{2}^{4} + 3T_{2}^{3} - 4T_{2} - 1 T 2 4 + 3 T 2 3 − 4 T 2 − 1
T2^4 + 3*T2^3 - 4*T2 - 1
acting on S 2 n e w ( Γ 0 ( 137 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(137)) S 2 n e w ( Γ 0 ( 1 3 7 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 3 T 3 + ⋯ − 1 T^{4} + 3 T^{3} + \cdots - 1 T 4 + 3 T 3 + ⋯ − 1
T^4 + 3*T^3 - 4*T - 1
3 3 3
T 4 + 5 T 3 + ⋯ − 11 T^{4} + 5 T^{3} + \cdots - 11 T 4 + 5 T 3 + ⋯ − 1 1
T^4 + 5*T^3 + 4*T^2 - 10*T - 11
5 5 5
T 4 + 2 T 3 + ⋯ + 1 T^{4} + 2 T^{3} + \cdots + 1 T 4 + 2 T 3 + ⋯ + 1
T^4 + 2*T^3 - 12*T^2 - 23*T + 1
7 7 7
T 4 + 13 T 3 + ⋯ + 79 T^{4} + 13 T^{3} + \cdots + 79 T 4 + 1 3 T 3 + ⋯ + 7 9
T^4 + 13*T^3 + 60*T^2 + 116*T + 79
11 11 1 1
T 4 − T 3 + ⋯ + 101 T^{4} - T^{3} + \cdots + 101 T 4 − T 3 + ⋯ + 1 0 1
T^4 - T^3 - 38*T^2 + 76*T + 101
13 13 1 3
T 4 + 8 T 3 + ⋯ − 101 T^{4} + 8 T^{3} + \cdots - 101 T 4 + 8 T 3 + ⋯ − 1 0 1
T^4 + 8*T^3 + 10*T^2 - 49*T - 101
17 17 1 7
T 4 + 4 T 3 + ⋯ + 31 T^{4} + 4 T^{3} + \cdots + 31 T 4 + 4 T 3 + ⋯ + 3 1
T^4 + 4*T^3 - 28*T^2 - 109*T + 31
19 19 1 9
T 4 + 10 T 3 + ⋯ − 431 T^{4} + 10 T^{3} + \cdots - 431 T 4 + 1 0 T 3 + ⋯ − 4 3 1
T^4 + 10*T^3 - 4*T^2 - 235*T - 431
23 23 2 3
T 4 + T 3 + ⋯ + 121 T^{4} + T^{3} + \cdots + 121 T 4 + T 3 + ⋯ + 1 2 1
T^4 + T^3 - 38*T^2 - 66*T + 121
29 29 2 9
T 4 − 11 T 3 + ⋯ − 551 T^{4} - 11 T^{3} + \cdots - 551 T 4 − 1 1 T 3 + ⋯ − 5 5 1
T^4 - 11*T^3 - 25*T^2 + 377*T - 551
31 31 3 1
T 4 + 17 T 3 + ⋯ − 319 T^{4} + 17 T^{3} + \cdots - 319 T 4 + 1 7 T 3 + ⋯ − 3 1 9
T^4 + 17*T^3 + 53*T^2 - 203*T - 319
37 37 3 7
T 4 + 4 T 3 + ⋯ − 191 T^{4} + 4 T^{3} + \cdots - 191 T 4 + 4 T 3 + ⋯ − 1 9 1
T^4 + 4*T^3 - 50*T^2 - 213*T - 191
41 41 4 1
T 4 + 7 T 3 + ⋯ − 121 T^{4} + 7 T^{3} + \cdots - 121 T 4 + 7 T 3 + ⋯ − 1 2 1
T^4 + 7*T^3 - 50*T^2 - 286*T - 121
43 43 4 3
T 4 + 13 T 3 + ⋯ − 191 T^{4} + 13 T^{3} + \cdots - 191 T 4 + 1 3 T 3 + ⋯ − 1 9 1
T^4 + 13*T^3 - 5*T^2 - 239*T - 191
47 47 4 7
T 4 + 11 T 3 + ⋯ − 41 T^{4} + 11 T^{3} + \cdots - 41 T 4 + 1 1 T 3 + ⋯ − 4 1
T^4 + 11*T^3 + 15*T^2 - 67*T - 41
53 53 5 3
T 4 + 2 T 3 + ⋯ − 1 T^{4} + 2 T^{3} + \cdots - 1 T 4 + 2 T 3 + ⋯ − 1
T^4 + 2*T^3 - 15*T^2 - 36*T - 1
59 59 5 9
T 4 − 2 T 3 + ⋯ − 709 T^{4} - 2 T^{3} + \cdots - 709 T 4 − 2 T 3 + ⋯ − 7 0 9
T^4 - 2*T^3 - 107*T^2 + 608*T - 709
61 61 6 1
T 4 − 7 T 3 + ⋯ + 11 T^{4} - 7 T^{3} + \cdots + 11 T 4 − 7 T 3 + ⋯ + 1 1
T^4 - 7*T^3 - 17*T^2 + 133*T + 11
67 67 6 7
T 4 + 6 T 3 + ⋯ + 2831 T^{4} + 6 T^{3} + \cdots + 2831 T 4 + 6 T 3 + ⋯ + 2 8 3 1
T^4 + 6*T^3 - 123*T^2 - 536*T + 2831
71 71 7 1
( T 2 − 4 T − 16 ) 2 (T^{2} - 4 T - 16)^{2} ( T 2 − 4 T − 1 6 ) 2
(T^2 - 4*T - 16)^2
73 73 7 3
T 4 + 27 T 3 + ⋯ − 10219 T^{4} + 27 T^{3} + \cdots - 10219 T 4 + 2 7 T 3 + ⋯ − 1 0 2 1 9
T^4 + 27*T^3 + 144*T^2 - 1282*T - 10219
79 79 7 9
T 4 − 3 T 3 + ⋯ + 9329 T^{4} - 3 T^{3} + \cdots + 9329 T 4 − 3 T 3 + ⋯ + 9 3 2 9
T^4 - 3*T^3 - 255*T^2 + 89*T + 9329
83 83 8 3
T 4 + 3 T 3 + ⋯ + 6449 T^{4} + 3 T^{3} + \cdots + 6449 T 4 + 3 T 3 + ⋯ + 6 4 4 9
T^4 + 3*T^3 - 260*T^2 - 354*T + 6449
89 89 8 9
( T 2 − 7 T + 1 ) 2 (T^{2} - 7 T + 1)^{2} ( T 2 − 7 T + 1 ) 2
(T^2 - 7*T + 1)^2
97 97 9 7
T 4 + 7 T 3 + ⋯ + 211 T^{4} + 7 T^{3} + \cdots + 211 T 4 + 7 T 3 + ⋯ + 2 1 1
T^4 + 7*T^3 - 206*T^2 + 658*T + 211
show more
show less