Properties

Label 13.4.c.b.9.2
Level 13
Weight 4
Character 13.9
Analytic conductor 0.767
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 13.c (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.767024830075\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.2
Root \(1.28078 + 2.21837i\)
Character \(\chi\) = 13.9
Dual form 13.4.c.b.3.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(2.28078 - 3.95042i) q^{2}\) \(+(-4.34233 + 7.52113i) q^{3}\) \(+(-6.40388 - 11.0918i) q^{4}\) \(+2.80776 q^{5}\) \(+(19.8078 + 34.3081i) q^{6}\) \(+(-4.78078 - 8.28055i) q^{7}\) \(-21.9309 q^{8}\) \(+(-24.2116 - 41.9358i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(2.28078 - 3.95042i) q^{2}\) \(+(-4.34233 + 7.52113i) q^{3}\) \(+(-6.40388 - 11.0918i) q^{4}\) \(+2.80776 q^{5}\) \(+(19.8078 + 34.3081i) q^{6}\) \(+(-4.78078 - 8.28055i) q^{7}\) \(-21.9309 q^{8}\) \(+(-24.2116 - 41.9358i) q^{9}\) \(+(6.40388 - 11.0918i) q^{10}\) \(+(-19.7116 + 34.1416i) q^{11}\) \(+111.231 q^{12}\) \(+(40.5270 - 23.5492i) q^{13}\) \(-43.6155 q^{14}\) \(+(-12.1922 + 21.1176i) q^{15}\) \(+(1.21165 - 2.09863i) q^{16}\) \(+(-1.00758 - 1.74518i) q^{17}\) \(-220.885 q^{18}\) \(+(30.0961 + 52.1280i) q^{19}\) \(+(-17.9806 - 31.1433i) q^{20}\) \(+83.0388 q^{21}\) \(+(89.9157 + 155.739i) q^{22}\) \(+(-2.23438 + 3.87006i) q^{23}\) \(+(95.2311 - 164.945i) q^{24}\) \(-117.116 q^{25}\) \(+(-0.596118 - 213.809i) q^{26}\) \(+186.054 q^{27}\) \(+(-61.2311 + 106.055i) q^{28}\) \(+(-70.3466 + 121.844i) q^{29}\) \(+(55.6155 + 96.3289i) q^{30}\) \(+136.155 q^{31}\) \(+(-93.2505 - 161.515i) q^{32}\) \(+(-171.189 - 296.508i) q^{33}\) \(-9.19224 q^{34}\) \(+(-13.4233 - 23.2498i) q^{35}\) \(+(-310.097 + 537.104i) q^{36}\) \(+(92.8542 - 160.828i) q^{37}\) \(+274.570 q^{38}\) \(+(1.13494 + 407.067i) q^{39}\) \(-61.5767 q^{40}\) \(+(-155.116 + 268.668i) q^{41}\) \(+(189.393 - 328.038i) q^{42}\) \(+(-213.735 - 370.200i) q^{43}\) \(+504.924 q^{44}\) \(+(-67.9806 - 117.746i) q^{45}\) \(+(10.1922 + 17.6535i) q^{46}\) \(-258.617 q^{47}\) \(+(10.5227 + 18.2259i) q^{48}\) \(+(125.788 - 217.872i) q^{49}\) \(+(-267.116 + 462.659i) q^{50}\) \(+17.5009 q^{51}\) \(+(-520.734 - 298.713i) q^{52}\) \(+612.656 q^{53}\) \(+(424.348 - 734.991i) q^{54}\) \(+(-55.3457 + 95.8615i) q^{55}\) \(+(104.847 + 181.600i) q^{56}\) \(-522.749 q^{57}\) \(+(320.890 + 555.797i) q^{58}\) \(+(258.943 + 448.502i) q^{59}\) \(+312.311 q^{60}\) \(+(80.6553 + 139.699i) q^{61}\) \(+(310.540 - 537.871i) q^{62}\) \(+(-231.501 + 400.971i) q^{63}\) \(-831.348 q^{64}\) \(+(113.790 - 66.1205i) q^{65}\) \(-1561.77 q^{66}\) \(+(24.9493 - 43.2135i) q^{67}\) \(+(-12.9048 + 22.3518i) q^{68}\) \(+(-19.4048 - 33.6101i) q^{69}\) \(-122.462 q^{70}\) \(+(-139.982 - 242.455i) q^{71}\) \(+(530.982 + 919.689i) q^{72}\) \(+467.732 q^{73}\) \(+(-423.559 - 733.626i) q^{74}\) \(+(508.558 - 880.849i) q^{75}\) \(+(385.464 - 667.643i) q^{76}\) \(+376.948 q^{77}\) \(+(1610.68 + 923.946i) q^{78}\) \(+37.5379 q^{79}\) \(+(3.40202 - 5.89247i) q^{80}\) \(+(-154.193 + 267.070i) q^{81}\) \(+(707.568 + 1225.54i) q^{82}\) \(-76.1553 q^{83}\) \(+(-531.771 - 921.054i) q^{84}\) \(+(-2.82904 - 4.90004i) q^{85}\) \(-1949.93 q^{86}\) \(+(-610.936 - 1058.17i) q^{87}\) \(+(432.294 - 748.754i) q^{88}\) \(+(-101.403 + 175.635i) q^{89}\) \(-620.194 q^{90}\) \(+(-388.750 - 223.002i) q^{91}\) \(+57.2348 q^{92}\) \(+(-591.231 + 1024.04i) q^{93}\) \(+(-589.848 + 1021.65i) q^{94}\) \(+(84.5028 + 146.363i) q^{95}\) \(+1619.70 q^{96}\) \(+(587.184 + 1017.03i) q^{97}\) \(+(-573.790 - 993.834i) q^{98}\) \(+1909.01 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 38q^{6} \) \(\mathstrut -\mathstrut 15q^{7} \) \(\mathstrut -\mathstrut 30q^{8} \) \(\mathstrut -\mathstrut 35q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 38q^{6} \) \(\mathstrut -\mathstrut 15q^{7} \) \(\mathstrut -\mathstrut 30q^{8} \) \(\mathstrut -\mathstrut 35q^{9} \) \(\mathstrut +\mathstrut 5q^{10} \) \(\mathstrut -\mathstrut 17q^{11} \) \(\mathstrut +\mathstrut 280q^{12} \) \(\mathstrut +\mathstrut 125q^{13} \) \(\mathstrut -\mathstrut 92q^{14} \) \(\mathstrut -\mathstrut 90q^{15} \) \(\mathstrut -\mathstrut 57q^{16} \) \(\mathstrut -\mathstrut 70q^{17} \) \(\mathstrut -\mathstrut 430q^{18} \) \(\mathstrut +\mathstrut 141q^{19} \) \(\mathstrut -\mathstrut 175q^{20} \) \(\mathstrut +\mathstrut 126q^{21} \) \(\mathstrut +\mathstrut 170q^{22} \) \(\mathstrut -\mathstrut 145q^{23} \) \(\mathstrut +\mathstrut 216q^{24} \) \(\mathstrut +\mathstrut 150q^{25} \) \(\mathstrut -\mathstrut 23q^{26} \) \(\mathstrut +\mathstrut 670q^{27} \) \(\mathstrut -\mathstrut 80q^{28} \) \(\mathstrut -\mathstrut 34q^{29} \) \(\mathstrut +\mathstrut 140q^{30} \) \(\mathstrut -\mathstrut 280q^{31} \) \(\mathstrut -\mathstrut 105q^{32} \) \(\mathstrut -\mathstrut 425q^{33} \) \(\mathstrut -\mathstrut 78q^{34} \) \(\mathstrut +\mathstrut 70q^{35} \) \(\mathstrut -\mathstrut 725q^{36} \) \(\mathstrut +\mathstrut 190q^{37} \) \(\mathstrut +\mathstrut 620q^{38} \) \(\mathstrut -\mathstrut 181q^{39} \) \(\mathstrut -\mathstrut 370q^{40} \) \(\mathstrut -\mathstrut 538q^{41} \) \(\mathstrut +\mathstrut 370q^{42} \) \(\mathstrut -\mathstrut 455q^{43} \) \(\mathstrut +\mathstrut 1360q^{44} \) \(\mathstrut -\mathstrut 375q^{45} \) \(\mathstrut +\mathstrut 82q^{46} \) \(\mathstrut +\mathstrut 120q^{47} \) \(\mathstrut +\mathstrut 240q^{48} \) \(\mathstrut +\mathstrut 565q^{49} \) \(\mathstrut -\mathstrut 450q^{50} \) \(\mathstrut -\mathstrut 466q^{51} \) \(\mathstrut -\mathstrut 310q^{52} \) \(\mathstrut +\mathstrut 1090q^{53} \) \(\mathstrut +\mathstrut 914q^{54} \) \(\mathstrut -\mathstrut 510q^{55} \) \(\mathstrut +\mathstrut 172q^{56} \) \(\mathstrut -\mathstrut 450q^{57} \) \(\mathstrut +\mathstrut 595q^{58} \) \(\mathstrut +\mathstrut 809q^{59} \) \(\mathstrut -\mathstrut 400q^{60} \) \(\mathstrut -\mathstrut 502q^{61} \) \(\mathstrut +\mathstrut 500q^{62} \) \(\mathstrut -\mathstrut 390q^{63} \) \(\mathstrut -\mathstrut 2542q^{64} \) \(\mathstrut -\mathstrut 555q^{65} \) \(\mathstrut -\mathstrut 3196q^{66} \) \(\mathstrut +\mathstrut 475q^{67} \) \(\mathstrut +\mathstrut 505q^{68} \) \(\mathstrut +\mathstrut 479q^{69} \) \(\mathstrut -\mathstrut 160q^{70} \) \(\mathstrut -\mathstrut 127q^{71} \) \(\mathstrut +\mathstrut 1155q^{72} \) \(\mathstrut +\mathstrut 1170q^{73} \) \(\mathstrut -\mathstrut 849q^{74} \) \(\mathstrut +\mathstrut 1725q^{75} \) \(\mathstrut +\mathstrut 140q^{76} \) \(\mathstrut +\mathstrut 510q^{77} \) \(\mathstrut +\mathstrut 3070q^{78} \) \(\mathstrut +\mathstrut 480q^{79} \) \(\mathstrut +\mathstrut 1065q^{80} \) \(\mathstrut -\mathstrut 122q^{81} \) \(\mathstrut +\mathstrut 1515q^{82} \) \(\mathstrut +\mathstrut 520q^{83} \) \(\mathstrut -\mathstrut 1220q^{84} \) \(\mathstrut +\mathstrut 1205q^{85} \) \(\mathstrut -\mathstrut 3924q^{86} \) \(\mathstrut -\mathstrut 1615q^{87} \) \(\mathstrut +\mathstrut 1020q^{88} \) \(\mathstrut -\mathstrut 921q^{89} \) \(\mathstrut -\mathstrut 1450q^{90} \) \(\mathstrut -\mathstrut 1287q^{91} \) \(\mathstrut -\mathstrut 2080q^{92} \) \(\mathstrut -\mathstrut 2200q^{93} \) \(\mathstrut -\mathstrut 1040q^{94} \) \(\mathstrut -\mathstrut 1270q^{95} \) \(\mathstrut +\mathstrut 3840q^{96} \) \(\mathstrut +\mathstrut 415q^{97} \) \(\mathstrut -\mathstrut 1285q^{98} \) \(\mathstrut +\mathstrut 4420q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.28078 3.95042i 0.806376 1.39668i −0.108982 0.994044i \(-0.534759\pi\)
0.915358 0.402641i \(-0.131908\pi\)
\(3\) −4.34233 + 7.52113i −0.835682 + 1.44744i 0.0577926 + 0.998329i \(0.481594\pi\)
−0.893474 + 0.449114i \(0.851740\pi\)
\(4\) −6.40388 11.0918i −0.800485 1.38648i
\(5\) 2.80776 0.251134 0.125567 0.992085i \(-0.459925\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 19.8078 + 34.3081i 1.34775 + 2.33437i
\(7\) −4.78078 8.28055i −0.258138 0.447108i 0.707605 0.706608i \(-0.249775\pi\)
−0.965743 + 0.259500i \(0.916442\pi\)
\(8\) −21.9309 −0.969217
\(9\) −24.2116 41.9358i −0.896728 1.55318i
\(10\) 6.40388 11.0918i 0.202509 0.350755i
\(11\) −19.7116 + 34.1416i −0.540299 + 0.935825i 0.458588 + 0.888649i \(0.348355\pi\)
−0.998887 + 0.0471757i \(0.984978\pi\)
\(12\) 111.231 2.67580
\(13\) 40.5270 23.5492i 0.864628 0.502413i
\(14\) −43.6155 −0.832624
\(15\) −12.1922 + 21.1176i −0.209868 + 0.363502i
\(16\) 1.21165 2.09863i 0.0189320 0.0327911i
\(17\) −1.00758 1.74518i −0.0143749 0.0248981i 0.858748 0.512397i \(-0.171242\pi\)
−0.873123 + 0.487499i \(0.837909\pi\)
\(18\) −220.885 −2.89240
\(19\) 30.0961 + 52.1280i 0.363396 + 0.629420i 0.988517 0.151107i \(-0.0482839\pi\)
−0.625121 + 0.780528i \(0.714951\pi\)
\(20\) −17.9806 31.1433i −0.201029 0.348193i
\(21\) 83.0388 0.862884
\(22\) 89.9157 + 155.739i 0.871368 + 1.50925i
\(23\) −2.23438 + 3.87006i −0.0202565 + 0.0350853i −0.875976 0.482355i \(-0.839782\pi\)
0.855719 + 0.517440i \(0.173115\pi\)
\(24\) 95.2311 164.945i 0.809957 1.40289i
\(25\) −117.116 −0.936932
\(26\) −0.596118 213.809i −0.00449648 1.61275i
\(27\) 186.054 1.32615
\(28\) −61.2311 + 106.055i −0.413271 + 0.715806i
\(29\) −70.3466 + 121.844i −0.450449 + 0.780201i −0.998414 0.0563003i \(-0.982070\pi\)
0.547964 + 0.836502i \(0.315403\pi\)
\(30\) 55.6155 + 96.3289i 0.338465 + 0.586239i
\(31\) 136.155 0.788845 0.394423 0.918929i \(-0.370945\pi\)
0.394423 + 0.918929i \(0.370945\pi\)
\(32\) −93.2505 161.515i −0.515141 0.892250i
\(33\) −171.189 296.508i −0.903035 1.56410i
\(34\) −9.19224 −0.0463663
\(35\) −13.4233 23.2498i −0.0648272 0.112284i
\(36\) −310.097 + 537.104i −1.43563 + 2.48659i
\(37\) 92.8542 160.828i 0.412571 0.714594i −0.582599 0.812760i \(-0.697964\pi\)
0.995170 + 0.0981657i \(0.0312975\pi\)
\(38\) 274.570 1.17214
\(39\) 1.13494 + 407.067i 0.00465989 + 1.67136i
\(40\) −61.5767 −0.243403
\(41\) −155.116 + 268.668i −0.590853 + 1.02339i 0.403265 + 0.915083i \(0.367875\pi\)
−0.994118 + 0.108304i \(0.965458\pi\)
\(42\) 189.393 328.038i 0.695809 1.20518i
\(43\) −213.735 370.200i −0.758008 1.31291i −0.943865 0.330331i \(-0.892840\pi\)
0.185857 0.982577i \(-0.440494\pi\)
\(44\) 504.924 1.73000
\(45\) −67.9806 117.746i −0.225199 0.390056i
\(46\) 10.1922 + 17.6535i 0.0326688 + 0.0565840i
\(47\) −258.617 −0.802622 −0.401311 0.915942i \(-0.631445\pi\)
−0.401311 + 0.915942i \(0.631445\pi\)
\(48\) 10.5227 + 18.2259i 0.0316422 + 0.0548059i
\(49\) 125.788 217.872i 0.366730 0.635195i
\(50\) −267.116 + 462.659i −0.755519 + 1.30860i
\(51\) 17.5009 0.0480514
\(52\) −520.734 298.713i −1.38871 0.796617i
\(53\) 612.656 1.58783 0.793913 0.608031i \(-0.208040\pi\)
0.793913 + 0.608031i \(0.208040\pi\)
\(54\) 424.348 734.991i 1.06938 1.85222i
\(55\) −55.3457 + 95.8615i −0.135687 + 0.235017i
\(56\) 104.847 + 181.600i 0.250191 + 0.433344i
\(57\) −522.749 −1.21473
\(58\) 320.890 + 555.797i 0.726463 + 1.25827i
\(59\) 258.943 + 448.502i 0.571381 + 0.989661i 0.996425 + 0.0844878i \(0.0269254\pi\)
−0.425044 + 0.905173i \(0.639741\pi\)
\(60\) 312.311 0.671985
\(61\) 80.6553 + 139.699i 0.169293 + 0.293223i 0.938171 0.346171i \(-0.112518\pi\)
−0.768879 + 0.639395i \(0.779185\pi\)
\(62\) 310.540 537.871i 0.636106 1.10177i
\(63\) −231.501 + 400.971i −0.462958 + 0.801867i
\(64\) −831.348 −1.62373
\(65\) 113.790 66.1205i 0.217138 0.126173i
\(66\) −1561.77 −2.91274
\(67\) 24.9493 43.2135i 0.0454933 0.0787966i −0.842382 0.538881i \(-0.818847\pi\)
0.887875 + 0.460084i \(0.152181\pi\)
\(68\) −12.9048 + 22.3518i −0.0230138 + 0.0398611i
\(69\) −19.4048 33.6101i −0.0338560 0.0586403i
\(70\) −122.462 −0.209100
\(71\) −139.982 242.455i −0.233982 0.405269i 0.724994 0.688755i \(-0.241842\pi\)
−0.958976 + 0.283486i \(0.908509\pi\)
\(72\) 530.982 + 919.689i 0.869123 + 1.50537i
\(73\) 467.732 0.749916 0.374958 0.927042i \(-0.377657\pi\)
0.374958 + 0.927042i \(0.377657\pi\)
\(74\) −423.559 733.626i −0.665375 1.15246i
\(75\) 508.558 880.849i 0.782977 1.35616i
\(76\) 385.464 667.643i 0.581786 1.00768i
\(77\) 376.948 0.557886
\(78\) 1610.68 + 923.946i 2.33812 + 1.34123i
\(79\) 37.5379 0.0534600 0.0267300 0.999643i \(-0.491491\pi\)
0.0267300 + 0.999643i \(0.491491\pi\)
\(80\) 3.40202 5.89247i 0.00475446 0.00823497i
\(81\) −154.193 + 267.070i −0.211513 + 0.366352i
\(82\) 707.568 + 1225.54i 0.952900 + 1.65047i
\(83\) −76.1553 −0.100712 −0.0503562 0.998731i \(-0.516036\pi\)
−0.0503562 + 0.998731i \(0.516036\pi\)
\(84\) −531.771 921.054i −0.690726 1.19637i
\(85\) −2.82904 4.90004i −0.00361003 0.00625275i
\(86\) −1949.93 −2.44496
\(87\) −610.936 1058.17i −0.752865 1.30400i
\(88\) 432.294 748.754i 0.523666 0.907017i
\(89\) −101.403 + 175.635i −0.120772 + 0.209183i −0.920072 0.391749i \(-0.871870\pi\)
0.799300 + 0.600932i \(0.205204\pi\)
\(90\) −620.194 −0.726380
\(91\) −388.750 223.002i −0.447826 0.256890i
\(92\) 57.2348 0.0648602
\(93\) −591.231 + 1024.04i −0.659224 + 1.14181i
\(94\) −589.848 + 1021.65i −0.647215 + 1.12101i
\(95\) 84.5028 + 146.363i 0.0912611 + 0.158069i
\(96\) 1619.70 1.72198
\(97\) 587.184 + 1017.03i 0.614634 + 1.06458i 0.990449 + 0.137883i \(0.0440297\pi\)
−0.375814 + 0.926695i \(0.622637\pi\)
\(98\) −573.790 993.834i −0.591445 1.02441i
\(99\) 1909.01 1.93800
\(100\) 750.000 + 1299.04i 0.750000 + 1.29904i
\(101\) −485.348 + 840.648i −0.478158 + 0.828194i −0.999686 0.0250397i \(-0.992029\pi\)
0.521528 + 0.853234i \(0.325362\pi\)
\(102\) 39.9157 69.1360i 0.0387475 0.0671126i
\(103\) −1899.70 −1.81731 −0.908654 0.417550i \(-0.862889\pi\)
−0.908654 + 0.417550i \(0.862889\pi\)
\(104\) −888.792 + 516.454i −0.838012 + 0.486947i
\(105\) 233.153 0.216699
\(106\) 1397.33 2420.25i 1.28039 2.21769i
\(107\) 953.247 1651.07i 0.861251 1.49173i −0.00947163 0.999955i \(-0.503015\pi\)
0.870722 0.491775i \(-0.163652\pi\)
\(108\) −1191.47 2063.68i −1.06157 1.83868i
\(109\) −896.004 −0.787354 −0.393677 0.919249i \(-0.628797\pi\)
−0.393677 + 0.919249i \(0.628797\pi\)
\(110\) 252.462 + 437.277i 0.218830 + 0.379025i
\(111\) 806.407 + 1396.74i 0.689556 + 1.19435i
\(112\) −23.1704 −0.0195482
\(113\) 167.441 + 290.017i 0.139394 + 0.241438i 0.927267 0.374400i \(-0.122151\pi\)
−0.787873 + 0.615837i \(0.788818\pi\)
\(114\) −1192.27 + 2065.08i −0.979532 + 1.69660i
\(115\) −6.27361 + 10.8662i −0.00508710 + 0.00881112i
\(116\) 1801.96 1.44231
\(117\) −1968.78 1129.37i −1.55567 0.892394i
\(118\) 2362.36 1.84299
\(119\) −9.63401 + 16.6866i −0.00742141 + 0.0128543i
\(120\) 267.386 463.127i 0.203408 0.352312i
\(121\) −111.598 193.293i −0.0838452 0.145224i
\(122\) 735.827 0.546054
\(123\) −1347.13 2333.29i −0.987530 1.71045i
\(124\) −871.922 1510.21i −0.631459 1.09372i
\(125\) −679.806 −0.486430
\(126\) 1056.00 + 1829.05i 0.746637 + 1.29321i
\(127\) −310.447 + 537.709i −0.216911 + 0.375701i −0.953862 0.300245i \(-0.902931\pi\)
0.736951 + 0.675946i \(0.236265\pi\)
\(128\) −1150.11 + 1992.06i −0.794193 + 1.37558i
\(129\) 3712.44 2.53381
\(130\) −1.67376 600.325i −0.00112922 0.405015i
\(131\) −1331.70 −0.888180 −0.444090 0.895982i \(-0.646473\pi\)
−0.444090 + 0.895982i \(0.646473\pi\)
\(132\) −2192.55 + 3797.60i −1.44573 + 2.50408i
\(133\) 287.766 498.425i 0.187612 0.324954i
\(134\) −113.808 197.121i −0.0733694 0.127079i
\(135\) 522.396 0.333042
\(136\) 22.0971 + 38.2732i 0.0139324 + 0.0241316i
\(137\) −311.008 538.681i −0.193950 0.335932i 0.752606 0.658471i \(-0.228797\pi\)
−0.946556 + 0.322540i \(0.895463\pi\)
\(138\) −177.032 −0.109203
\(139\) −165.290 286.291i −0.100861 0.174697i 0.811178 0.584799i \(-0.198827\pi\)
−0.912040 + 0.410102i \(0.865493\pi\)
\(140\) −171.922 + 297.778i −0.103786 + 0.179763i
\(141\) 1123.00 1945.10i 0.670736 1.16175i
\(142\) −1277.07 −0.754711
\(143\) 5.15196 + 1847.85i 0.00301279 + 1.08059i
\(144\) −117.344 −0.0679073
\(145\) −197.517 + 342.109i −0.113123 + 0.195935i
\(146\) 1066.79 1847.74i 0.604715 1.04740i
\(147\) 1092.43 + 1892.14i 0.612939 + 1.06164i
\(148\) −2378.51 −1.32103
\(149\) 905.269 + 1567.97i 0.497735 + 0.862102i 0.999997 0.00261337i \(-0.000831864\pi\)
−0.502262 + 0.864716i \(0.667499\pi\)
\(150\) −2319.82 4018.04i −1.26275 2.18714i
\(151\) −423.239 −0.228097 −0.114049 0.993475i \(-0.536382\pi\)
−0.114049 + 0.993475i \(0.536382\pi\)
\(152\) −660.034 1143.21i −0.352209 0.610045i
\(153\) −48.7902 + 84.5071i −0.0257808 + 0.0446536i
\(154\) 859.734 1489.10i 0.449866 0.779190i
\(155\) 382.292 0.198106
\(156\) 4507.86 2619.40i 2.31357 1.34436i
\(157\) 1322.17 0.672105 0.336052 0.941843i \(-0.390908\pi\)
0.336052 + 0.941843i \(0.390908\pi\)
\(158\) 85.6155 148.290i 0.0431089 0.0746668i
\(159\) −2660.35 + 4607.87i −1.32692 + 2.29829i
\(160\) −261.825 453.495i −0.129369 0.224074i
\(161\) 42.7283 0.0209159
\(162\) 703.360 + 1218.26i 0.341119 + 0.590835i
\(163\) 1803.20 + 3123.23i 0.866486 + 1.50080i 0.865564 + 0.500798i \(0.166960\pi\)
0.000922205 1.00000i \(0.499706\pi\)
\(164\) 3973.37 1.89188
\(165\) −480.658 832.524i −0.226783 0.392800i
\(166\) −173.693 + 300.845i −0.0812121 + 0.140663i
\(167\) 1707.72 2957.85i 0.791300 1.37057i −0.133863 0.991000i \(-0.542738\pi\)
0.925162 0.379571i \(-0.123929\pi\)
\(168\) −1821.11 −0.836321
\(169\) 1087.87 1908.75i 0.495163 0.868800i
\(170\) −25.8096 −0.0116442
\(171\) 1457.35 2524.21i 0.651734 1.12884i
\(172\) −2737.47 + 4741.44i −1.21355 + 2.10193i
\(173\) −1171.11 2028.43i −0.514671 0.891436i −0.999855 0.0170243i \(-0.994581\pi\)
0.485184 0.874412i \(-0.338753\pi\)
\(174\) −5573.63 −2.42837
\(175\) 559.908 + 969.788i 0.241857 + 0.418909i
\(176\) 47.7671 + 82.7350i 0.0204578 + 0.0354340i
\(177\) −4497.66 −1.90997
\(178\) 462.555 + 801.169i 0.194775 + 0.337360i
\(179\) 333.446 577.545i 0.139234 0.241160i −0.787973 0.615710i \(-0.788869\pi\)
0.927207 + 0.374550i \(0.122203\pi\)
\(180\) −870.679 + 1508.06i −0.360537 + 0.624468i
\(181\) −701.037 −0.287888 −0.143944 0.989586i \(-0.545978\pi\)
−0.143944 + 0.989586i \(0.545978\pi\)
\(182\) −1767.61 + 1027.11i −0.719910 + 0.418321i
\(183\) −1400.93 −0.565899
\(184\) 49.0019 84.8737i 0.0196330 0.0340053i
\(185\) 260.713 451.567i 0.103611 0.179459i
\(186\) 2696.93 + 4671.22i 1.06316 + 1.84146i
\(187\) 79.4440 0.0310670
\(188\) 1656.16 + 2868.55i 0.642487 + 1.11282i
\(189\) −889.482 1540.63i −0.342330 0.592933i
\(190\) 770.928 0.294363
\(191\) −650.440 1126.59i −0.246409 0.426793i 0.716118 0.697980i \(-0.245917\pi\)
−0.962527 + 0.271186i \(0.912584\pi\)
\(192\) 3609.98 6252.68i 1.35692 2.35025i
\(193\) 259.667 449.756i 0.0968457 0.167742i −0.813532 0.581521i \(-0.802458\pi\)
0.910377 + 0.413779i \(0.135791\pi\)
\(194\) 5356.94 1.98251
\(195\) 3.18664 + 1142.95i 0.00117026 + 0.419735i
\(196\) −3222.14 −1.17425
\(197\) −1560.52 + 2702.91i −0.564379 + 0.977534i 0.432728 + 0.901525i \(0.357551\pi\)
−0.997107 + 0.0760091i \(0.975782\pi\)
\(198\) 4354.01 7541.38i 1.56276 2.70678i
\(199\) −618.529 1071.32i −0.220333 0.381629i 0.734576 0.678527i \(-0.237381\pi\)
−0.954909 + 0.296898i \(0.904048\pi\)
\(200\) 2568.47 0.908090
\(201\) 216.677 + 375.295i 0.0760358 + 0.131698i
\(202\) 2213.94 + 3834.66i 0.771151 + 1.33567i
\(203\) 1345.25 0.465112
\(204\) −112.074 194.118i −0.0384644 0.0666223i
\(205\) −435.528 + 754.356i −0.148383 + 0.257007i
\(206\) −4332.78 + 7504.60i −1.46543 + 2.53821i
\(207\) 216.392 0.0726584
\(208\) −0.316683 113.585i −0.000105568 0.0378638i
\(209\) −2372.98 −0.785369
\(210\) 531.771 921.054i 0.174741 0.302661i
\(211\) 1265.83 2192.49i 0.413003 0.715342i −0.582214 0.813036i \(-0.697813\pi\)
0.995217 + 0.0976940i \(0.0311466\pi\)
\(212\) −3923.38 6795.49i −1.27103 2.20149i
\(213\) 2431.38 0.782139
\(214\) −4348.28 7531.45i −1.38898 2.40579i
\(215\) −600.118 1039.44i −0.190362 0.329716i
\(216\) −4080.33 −1.28533
\(217\) −650.928 1127.44i −0.203631 0.352699i
\(218\) −2043.58 + 3539.59i −0.634904 + 1.09969i
\(219\) −2031.05 + 3517.88i −0.626691 + 1.08546i
\(220\) 1417.71 0.434463
\(221\) −81.9315 46.9991i −0.0249381 0.0143054i
\(222\) 7356.93 2.22417
\(223\) 597.766 1035.36i 0.179504 0.310910i −0.762207 0.647333i \(-0.775884\pi\)
0.941711 + 0.336424i \(0.109217\pi\)
\(224\) −891.619 + 1544.33i −0.265955 + 0.460647i
\(225\) 2835.58 + 4911.37i 0.840173 + 1.45522i
\(226\) 1527.58 0.449617
\(227\) 434.596 + 752.742i 0.127071 + 0.220094i 0.922541 0.385900i \(-0.126109\pi\)
−0.795469 + 0.605994i \(0.792776\pi\)
\(228\) 3347.62 + 5798.25i 0.972376 + 1.68420i
\(229\) 4684.64 1.35183 0.675916 0.736978i \(-0.263748\pi\)
0.675916 + 0.736978i \(0.263748\pi\)
\(230\) 28.6174 + 49.5668i 0.00820424 + 0.0142102i
\(231\) −1636.83 + 2835.08i −0.466215 + 0.807508i
\(232\) 1542.76 2672.14i 0.436583 0.756184i
\(233\) −4868.99 −1.36900 −0.684502 0.729011i \(-0.739980\pi\)
−0.684502 + 0.729011i \(0.739980\pi\)
\(234\) −8951.82 + 5201.67i −2.50085 + 1.45318i
\(235\) −726.137 −0.201566
\(236\) 3316.48 5744.31i 0.914764 1.58442i
\(237\) −163.002 + 282.328i −0.0446756 + 0.0773803i
\(238\) 43.9460 + 76.1167i 0.0119689 + 0.0207307i
\(239\) 4807.53 1.30114 0.650572 0.759444i \(-0.274529\pi\)
0.650572 + 0.759444i \(0.274529\pi\)
\(240\) 29.5454 + 51.1740i 0.00794643 + 0.0137636i
\(241\) −2937.98 5088.73i −0.785278 1.36014i −0.928833 0.370499i \(-0.879187\pi\)
0.143555 0.989642i \(-0.454147\pi\)
\(242\) −1018.12 −0.270443
\(243\) 1172.61 + 2031.03i 0.309561 + 0.536175i
\(244\) 1033.01 1789.23i 0.271033 0.469442i
\(245\) 353.184 611.733i 0.0920984 0.159519i
\(246\) −12290.0 −3.18528
\(247\) 2447.28 + 1403.85i 0.630431 + 0.361640i
\(248\) −2986.00 −0.764562
\(249\) 330.691 572.774i 0.0841635 0.145775i
\(250\) −1550.49 + 2685.52i −0.392245 + 0.679389i
\(251\) −2903.13 5028.38i −0.730057 1.26450i −0.956858 0.290554i \(-0.906160\pi\)
0.226802 0.973941i \(-0.427173\pi\)
\(252\) 5930.02 1.48237
\(253\) −88.0866 152.570i −0.0218891 0.0379131i
\(254\) 1416.12 + 2452.79i 0.349823 + 0.605912i
\(255\) 49.1385 0.0120673
\(256\) 1920.92 + 3327.12i 0.468974 + 0.812286i
\(257\) 597.930 1035.65i 0.145128 0.251369i −0.784293 0.620391i \(-0.786974\pi\)
0.929421 + 0.369022i \(0.120307\pi\)
\(258\) 8467.24 14665.7i 2.04321 3.53894i
\(259\) −1775.66 −0.426001
\(260\) −1462.10 838.716i −0.348752 0.200058i
\(261\) 6812.83 1.61572
\(262\) −3037.32 + 5260.79i −0.716207 + 1.24051i
\(263\) −117.092 + 202.810i −0.0274533 + 0.0475505i −0.879426 0.476036i \(-0.842073\pi\)
0.851972 + 0.523587i \(0.175406\pi\)
\(264\) 3754.32 + 6502.68i 0.875237 + 1.51595i
\(265\) 1720.19 0.398757
\(266\) −1312.66 2273.59i −0.302572 0.524071i
\(267\) −880.650 1525.33i −0.201854 0.349621i
\(268\) −639.091 −0.145667
\(269\) 1334.13 + 2310.79i 0.302393 + 0.523760i 0.976677 0.214712i \(-0.0688813\pi\)
−0.674285 + 0.738471i \(0.735548\pi\)
\(270\) 1191.47 2063.68i 0.268557 0.465155i
\(271\) −2850.64 + 4937.45i −0.638982 + 1.10675i 0.346675 + 0.937985i \(0.387311\pi\)
−0.985657 + 0.168763i \(0.946023\pi\)
\(272\) −4.88331 −0.00108858
\(273\) 3365.31 1955.50i 0.746073 0.433524i
\(274\) −2837.35 −0.625587
\(275\) 2308.56 3998.54i 0.506223 0.876804i
\(276\) −248.532 + 430.471i −0.0542025 + 0.0938815i
\(277\) 3576.24 + 6194.24i 0.775725 + 1.34359i 0.934386 + 0.356261i \(0.115949\pi\)
−0.158662 + 0.987333i \(0.550718\pi\)
\(278\) −1507.96 −0.325329
\(279\) −3296.54 5709.78i −0.707380 1.22522i
\(280\) 294.384 + 509.889i 0.0628316 + 0.108827i
\(281\) −6132.87 −1.30198 −0.650990 0.759086i \(-0.725646\pi\)
−0.650990 + 0.759086i \(0.725646\pi\)
\(282\) −5122.63 8872.66i −1.08173 1.87361i
\(283\) −1688.58 + 2924.70i −0.354683 + 0.614330i −0.987064 0.160328i \(-0.948745\pi\)
0.632380 + 0.774658i \(0.282078\pi\)
\(284\) −1792.85 + 3105.31i −0.374599 + 0.648824i
\(285\) −1467.76 −0.305061
\(286\) 7311.53 + 4194.18i 1.51168 + 0.867157i
\(287\) 2966.29 0.610086
\(288\) −4515.49 + 7821.07i −0.923882 + 1.60021i
\(289\) 2454.47 4251.27i 0.499587 0.865310i
\(290\) 900.982 + 1560.55i 0.182440 + 0.315995i
\(291\) −10199.0 −2.05455
\(292\) −2995.30 5188.01i −0.600297 1.03974i
\(293\) 2352.38 + 4074.45i 0.469037 + 0.812395i 0.999374 0.0353917i \(-0.0112679\pi\)
−0.530337 + 0.847787i \(0.677935\pi\)
\(294\) 9966.34 1.97704
\(295\) 727.050 + 1259.29i 0.143493 + 0.248537i
\(296\) −2036.37 + 3527.10i −0.399871 + 0.692596i
\(297\) −3667.43 + 6352.18i −0.716518 + 1.24105i
\(298\) 8258.86 1.60545
\(299\) 0.583991 + 209.460i 0.000112953 + 0.0405129i
\(300\) −13027.0 −2.50704
\(301\) −2043.64 + 3539.69i −0.391341 + 0.677822i
\(302\) −965.312 + 1671.97i −0.183932 + 0.318580i
\(303\) −4215.09 7300.74i −0.799176 1.38421i
\(304\) 145.863 0.0275192
\(305\) 226.461 + 392.242i 0.0425151 + 0.0736384i
\(306\) 222.559 + 385.484i 0.0415780 + 0.0720152i
\(307\) 5130.49 0.953787 0.476894 0.878961i \(-0.341763\pi\)
0.476894 + 0.878961i \(0.341763\pi\)
\(308\) −2413.93 4181.05i −0.446579 0.773498i
\(309\) 8249.11 14287.9i 1.51869 2.63045i
\(310\) 871.922 1510.21i 0.159748 0.276692i
\(311\) 7948.94 1.44933 0.724667 0.689099i \(-0.241994\pi\)
0.724667 + 0.689099i \(0.241994\pi\)
\(312\) −24.8902 8927.34i −0.00451644 1.61991i
\(313\) −8521.87 −1.53893 −0.769465 0.638689i \(-0.779477\pi\)
−0.769465 + 0.638689i \(0.779477\pi\)
\(314\) 3015.57 5223.12i 0.541969 0.938718i
\(315\) −650.000 + 1125.83i −0.116265 + 0.201376i
\(316\) −240.388 416.365i −0.0427940 0.0741213i
\(317\) −6662.46 −1.18044 −0.590222 0.807241i \(-0.700960\pi\)
−0.590222 + 0.807241i \(0.700960\pi\)
\(318\) 12135.3 + 21019.0i 2.13999 + 3.70657i
\(319\) −2773.29 4803.49i −0.486754 0.843083i
\(320\) −2334.23 −0.407773
\(321\) 8278.62 + 14339.0i 1.43946 + 2.49322i
\(322\) 97.4536 168.795i 0.0168661 0.0292129i
\(323\) 60.6483 105.046i 0.0104476 0.0180957i
\(324\) 3949.74 0.677253
\(325\) −4746.38 + 2758.00i −0.810097 + 0.470726i
\(326\) 16450.8 2.79486
\(327\) 3890.74 6738.96i 0.657977 1.13965i
\(328\) 3401.82 5892.12i 0.572665 0.991884i
\(329\) 1236.39 + 2141.49i 0.207187 + 0.358858i
\(330\) −4385.09 −0.731489
\(331\) 1955.89 + 3387.69i 0.324789 + 0.562551i 0.981470 0.191618i \(-0.0613733\pi\)
−0.656681 + 0.754169i \(0.728040\pi\)
\(332\) 487.689 + 844.703i 0.0806188 + 0.139636i
\(333\) −8992.61 −1.47986
\(334\) −7789.84 13492.4i −1.27617 2.21039i
\(335\) 70.0519 121.333i 0.0114249 0.0197885i
\(336\) 100.614 174.268i 0.0163361 0.0282949i
\(337\) −627.211 −0.101384 −0.0506919 0.998714i \(-0.516143\pi\)
−0.0506919 + 0.998714i \(0.516143\pi\)
\(338\) −5059.18 8651.00i −0.814152 1.39217i
\(339\) −2908.34 −0.465957
\(340\) −36.2337 + 62.7586i −0.00577955 + 0.0100105i
\(341\) −2683.84 + 4648.56i −0.426212 + 0.738221i
\(342\) −6647.79 11514.3i −1.05109 1.82053i
\(343\) −5685.08 −0.894943
\(344\) 4687.40 + 8118.82i 0.734674 + 1.27249i
\(345\) −54.4841 94.3693i −0.00850240 0.0147266i
\(346\) −10684.2 −1.66007
\(347\) 1911.51 + 3310.83i 0.295721 + 0.512204i 0.975152 0.221535i \(-0.0711068\pi\)
−0.679431 + 0.733739i \(0.737773\pi\)
\(348\) −7824.72 + 13552.8i −1.20531 + 2.08767i
\(349\) −1705.33 + 2953.72i −0.261560 + 0.453035i −0.966657 0.256076i \(-0.917570\pi\)
0.705097 + 0.709111i \(0.250904\pi\)
\(350\) 5108.10 0.780112
\(351\) 7540.21 4381.42i 1.14663 0.666275i
\(352\) 7352.48 1.11332
\(353\) 2793.82 4839.03i 0.421246 0.729620i −0.574815 0.818283i \(-0.694926\pi\)
0.996062 + 0.0886632i \(0.0282595\pi\)
\(354\) −10258.2 + 17767.6i −1.54015 + 2.66763i
\(355\) −393.035 680.757i −0.0587609 0.101777i
\(356\) 2597.49 0.386704
\(357\) −83.6680 144.917i −0.0124039 0.0214841i
\(358\) −1521.03 2634.50i −0.224550 0.388932i
\(359\) 2230.14 0.327861 0.163931 0.986472i \(-0.447583\pi\)
0.163931 + 0.986472i \(0.447583\pi\)
\(360\) 1490.87 + 2582.27i 0.218266 + 0.378049i
\(361\) 1617.95 2802.37i 0.235887 0.408568i
\(362\) −1598.91 + 2769.39i −0.232146 + 0.402088i
\(363\) 1938.38 0.280272
\(364\) 16.0037 + 5740.04i 0.00230446 + 0.826538i
\(365\) 1313.28 0.188330
\(366\) −3195.20 + 5534.25i −0.456327 + 0.790382i
\(367\) 4349.57 7533.68i 0.618653 1.07154i −0.371078 0.928602i \(-0.621012\pi\)
0.989732 0.142938i \(-0.0456548\pi\)
\(368\) 5.41455 + 9.37828i 0.000766992 + 0.00132847i
\(369\) 15022.4 2.11934
\(370\) −1189.25 2059.85i −0.167098 0.289423i
\(371\) −2928.97 5073.13i −0.409878 0.709929i
\(372\) 15144.7 2.11080
\(373\) −5482.09 9495.26i −0.760997 1.31809i −0.942337 0.334665i \(-0.891377\pi\)
0.181340 0.983420i \(-0.441956\pi\)
\(374\) 181.194 313.837i 0.0250517 0.0433908i
\(375\) 2951.94 5112.91i 0.406500 0.704079i
\(376\) 5671.70 0.777914
\(377\) 18.3862 + 6594.57i 0.00251177 + 0.900895i
\(378\) −8114.84 −1.10419
\(379\) −6955.06 + 12046.5i −0.942631 + 1.63269i −0.182206 + 0.983260i \(0.558324\pi\)
−0.760426 + 0.649425i \(0.775010\pi\)
\(380\) 1082.29 1874.58i 0.146106 0.253064i
\(381\) −2696.12 4669.82i −0.362537 0.627932i
\(382\) −5934.03 −0.794794
\(383\) 247.377 + 428.469i 0.0330035 + 0.0571638i 0.882055 0.471146i \(-0.156159\pi\)
−0.849052 + 0.528310i \(0.822826\pi\)
\(384\) −9988.35 17300.3i −1.32738 2.29910i
\(385\) 1058.38 0.140104
\(386\) −1184.48 2051.59i −0.156188 0.270526i
\(387\) −10349.8 + 17926.3i −1.35945 + 2.35464i
\(388\) 7520.52 13025.9i 0.984011 1.70436i
\(389\) −4140.47 −0.539666 −0.269833 0.962907i \(-0.586968\pi\)
−0.269833 + 0.962907i \(0.586968\pi\)
\(390\) 4522.40 + 2594.22i 0.587181 + 0.336830i
\(391\) 9.00524 0.00116474
\(392\) −2758.65 + 4778.12i −0.355441 + 0.615641i
\(393\) 5782.70 10015.9i 0.742236 1.28559i
\(394\) 7118.41 + 12329.5i 0.910204 + 1.57652i
\(395\) 105.398 0.0134256
\(396\) −12225.0 21174.4i −1.55134 2.68700i
\(397\) 940.896 + 1629.68i 0.118948 + 0.206023i 0.919351 0.393439i \(-0.128715\pi\)
−0.800403 + 0.599462i \(0.795381\pi\)
\(398\) −5642.90 −0.710686
\(399\) 2499.15 + 4328.65i 0.313568 + 0.543116i
\(400\) −141.904 + 245.784i −0.0177380 + 0.0307231i
\(401\) −210.883 + 365.259i −0.0262618 + 0.0454867i −0.878858 0.477084i \(-0.841694\pi\)
0.852596 + 0.522571i \(0.175027\pi\)
\(402\) 1976.76 0.245254
\(403\) 5517.96 3206.34i 0.682058 0.396326i
\(404\) 12432.5 1.53103
\(405\) −432.938 + 749.871i −0.0531182 + 0.0920034i
\(406\) 3068.20 5314.28i 0.375055 0.649615i
\(407\) 3660.62 + 6340.37i 0.445823 + 0.772188i
\(408\) −383.811 −0.0465722
\(409\) −1275.11 2208.55i −0.154157 0.267007i 0.778595 0.627527i \(-0.215933\pi\)
−0.932752 + 0.360520i \(0.882599\pi\)
\(410\) 1986.68 + 3441.04i 0.239306 + 0.414489i
\(411\) 5401.99 0.648322
\(412\) 12165.4 + 21071.2i 1.45473 + 2.51966i
\(413\) 2475.89 4288.37i 0.294990 0.510937i
\(414\) 493.542 854.839i 0.0585900 0.101481i
\(415\) −213.826 −0.0252923
\(416\) −7582.69 4349.73i −0.893683 0.512651i
\(417\) 2870.98 0.337152
\(418\) −5412.23 + 9374.25i −0.633303 + 1.09691i
\(419\) −6192.41 + 10725.6i −0.722002 + 1.25054i 0.238194 + 0.971218i \(0.423445\pi\)
−0.960196 + 0.279327i \(0.909889\pi\)
\(420\) −1493.09 2586.10i −0.173465 0.300450i
\(421\) 10463.0 1.21124 0.605622 0.795752i \(-0.292924\pi\)
0.605622 + 0.795752i \(0.292924\pi\)
\(422\) −5774.17 10001.2i −0.666071 1.15367i
\(423\) 6261.55 + 10845.3i 0.719733 + 1.24661i
\(424\) −13436.1 −1.53895
\(425\) 118.004 + 204.389i 0.0134683 + 0.0233278i
\(426\) 5545.44 9604.99i 0.630698 1.09240i
\(427\) 771.190 1335.74i 0.0874016 0.151384i
\(428\) −24417.9 −2.75767
\(429\) −13920.3 7985.22i −1.56661 0.898671i
\(430\) −5474.94 −0.614012
\(431\) 1981.19 3431.53i 0.221417 0.383506i −0.733821 0.679342i \(-0.762265\pi\)
0.955238 + 0.295837i \(0.0955985\pi\)
\(432\) 225.432 390.459i 0.0251067 0.0434860i
\(433\) 4197.07 + 7269.54i 0.465816 + 0.806817i 0.999238 0.0390321i \(-0.0124275\pi\)
−0.533422 + 0.845849i \(0.679094\pi\)
\(434\) −5938.48 −0.656812
\(435\) −1715.36 2971.10i −0.189070 0.327479i
\(436\) 5737.90 + 9938.34i 0.630265 + 1.09165i
\(437\) −268.984 −0.0294446
\(438\) 9264.72 + 16047.0i 1.01070 + 1.75058i
\(439\) −5087.26 + 8811.39i −0.553079 + 0.957960i 0.444972 + 0.895545i \(0.353214\pi\)
−0.998050 + 0.0624156i \(0.980120\pi\)
\(440\) 1213.78 2102.33i 0.131510 0.227783i
\(441\) −12182.2 −1.31543
\(442\) −372.534 + 216.470i −0.0400896 + 0.0232950i
\(443\) −5880.74 −0.630705 −0.315353 0.948975i \(-0.602123\pi\)
−0.315353 + 0.948975i \(0.602123\pi\)
\(444\) 10328.3 17889.1i 1.10396 1.91211i
\(445\) −284.716 + 493.142i −0.0303299 + 0.0525330i
\(446\) −2726.74 4722.85i −0.289495 0.501420i
\(447\) −15723.9 −1.66379
\(448\) 3974.49 + 6884.01i 0.419145 + 0.725980i
\(449\) −5332.43 9236.05i −0.560475 0.970771i −0.997455 0.0712996i \(-0.977285\pi\)
0.436980 0.899471i \(-0.356048\pi\)
\(450\) 25869.3 2.70998
\(451\) −6115.16 10591.8i −0.638474 1.10587i
\(452\) 2144.55 3714.47i 0.223166 0.386535i
\(453\) 1837.84 3183.23i 0.190617 0.330158i
\(454\) 3964.87 0.409869
\(455\) −1091.52 626.138i −0.112464 0.0645138i
\(456\) 11464.3 1.17734
\(457\) 7414.43 12842.2i 0.758933 1.31451i −0.184462 0.982840i \(-0.559054\pi\)
0.943395 0.331671i \(-0.107612\pi\)
\(458\) 10684.6 18506.3i 1.09009 1.88808i
\(459\) −187.464 324.697i −0.0190633 0.0330186i
\(460\) 160.702 0.0162886
\(461\) 4855.85 + 8410.58i 0.490585 + 0.849717i 0.999941 0.0108381i \(-0.00344995\pi\)
−0.509357 + 0.860555i \(0.670117\pi\)
\(462\) 7466.49 + 12932.3i 0.751889 + 1.30231i
\(463\) 11353.5 1.13962 0.569809 0.821777i \(-0.307017\pi\)
0.569809 + 0.821777i \(0.307017\pi\)
\(464\) 170.470 + 295.263i 0.0170558 + 0.0295415i
\(465\) −1660.04 + 2875.27i −0.165554 + 0.286747i
\(466\) −11105.1 + 19234.6i −1.10393 + 1.91207i
\(467\) 6451.31 0.639252 0.319626 0.947544i \(-0.396443\pi\)
0.319626 + 0.947544i \(0.396443\pi\)
\(468\) 81.0489 + 29069.7i 0.00800531 + 2.87126i
\(469\) −477.109 −0.0469741
\(470\) −1656.16 + 2868.55i −0.162538 + 0.281524i
\(471\) −5741.29 + 9944.20i −0.561666 + 0.972833i
\(472\) −5678.84 9836.04i −0.553792 0.959196i
\(473\) 16852.3 1.63820
\(474\) 743.542 + 1287.85i 0.0720506 + 0.124795i
\(475\) −3524.75 6105.05i −0.340477 0.589724i
\(476\) 246.780 0.0237629
\(477\) −14833.4 25692.2i −1.42385 2.46618i
\(478\) 10964.9 18991.8i 1.04921 1.81729i
\(479\) 4783.23 8284.79i 0.456266 0.790275i −0.542494 0.840059i \(-0.682520\pi\)
0.998760 + 0.0497842i \(0.0158533\pi\)
\(480\) 4547.73 0.432447
\(481\) −24.2689 8704.52i −0.00230056 0.825139i
\(482\) −26803.5 −2.53292
\(483\) −185.540 + 321.365i −0.0174790 + 0.0302746i
\(484\) −1429.32 + 2475.66i −0.134234 + 0.232500i
\(485\) 1648.67 + 2855.59i 0.154356 + 0.267352i
\(486\) 10697.9 0.998489
\(487\) −2458.56 4258.35i −0.228764 0.396230i 0.728678 0.684856i \(-0.240135\pi\)
−0.957442 + 0.288626i \(0.906802\pi\)
\(488\) −1768.84 3063.72i −0.164081 0.284197i
\(489\) −31320.3 −2.89643
\(490\) −1611.07 2790.45i −0.148532 0.257265i
\(491\) −1475.41 + 2555.49i −0.135610 + 0.234883i −0.925830 0.377940i \(-0.876633\pi\)
0.790220 + 0.612823i \(0.209966\pi\)
\(492\) −17253.7 + 29884.2i −1.58101 + 2.73838i
\(493\) 283.519 0.0259007
\(494\) 11127.5 6465.90i 1.01346 0.588896i
\(495\) 5360.04 0.486699
\(496\) 164.972 285.740i 0.0149344 0.0258671i
\(497\) −1338.44 + 2318.25i −0.120799 + 0.209231i
\(498\) −1508.47 2612.74i −0.135735 0.235100i
\(499\) 13430.1 1.20484 0.602418 0.798180i \(-0.294204\pi\)
0.602418 + 0.798180i \(0.294204\pi\)
\(500\) 4353.40 + 7540.30i 0.389380 + 0.674425i
\(501\) 14830.9 + 25687.9i 1.32255 + 2.29072i
\(502\) −26485.6 −2.35480
\(503\) −660.143 1143.40i −0.0585175 0.101355i 0.835283 0.549821i \(-0.185304\pi\)
−0.893800 + 0.448466i \(0.851971\pi\)
\(504\) 5077.02 8793.65i 0.448707 0.777183i
\(505\) −1362.74 + 2360.34i −0.120082 + 0.207988i
\(506\) −803.623 −0.0706036
\(507\) 9632.09 + 16470.5i 0.843740 + 1.44276i
\(508\) 7952.25 0.694536
\(509\) −10458.2 + 18114.2i −0.910713 + 1.57740i −0.0976524 + 0.995221i \(0.531133\pi\)
−0.813060 + 0.582180i \(0.802200\pi\)
\(510\) 112.074 194.118i 0.00973082 0.0168543i
\(511\) −2236.12 3873.08i −0.193582 0.335293i
\(512\) −877.105 −0.0757089
\(513\) 5599.50 + 9698.62i 0.481918 + 0.834707i
\(514\) −2727.49 4724.15i −0.234055 0.405396i
\(515\) −5333.90 −0.456388
\(516\) −23774.0 41177.8i −2.02828 3.51308i
\(517\) 5097.77 8829.60i 0.433655 0.751113i
\(518\) −4049.88 + 7014.60i −0.343517 + 0.594988i
\(519\) 20341.4 1.72040
\(520\) −2495.52 + 1450.08i −0.210453 + 0.122289i
\(521\) −10104.2 −0.849661 −0.424831 0.905273i \(-0.639666\pi\)
−0.424831 + 0.905273i \(0.639666\pi\)
\(522\) 15538.5 26913.5i 1.30288 2.25665i
\(523\) −3565.61 + 6175.82i −0.298113 + 0.516347i −0.975704 0.219092i \(-0.929691\pi\)
0.677591 + 0.735439i \(0.263024\pi\)
\(524\) 8528.08 + 14771.1i 0.710975 + 1.23144i
\(525\) −9725.21 −0.808463
\(526\) 534.122 + 925.127i 0.0442753 + 0.0766871i
\(527\) −137.187 237.615i −0.0113396 0.0196407i
\(528\) −829.682 −0.0683849
\(529\) 6073.52 + 10519.6i 0.499179 + 0.864604i
\(530\) 3923.38 6795.49i 0.321548 0.556938i
\(531\) 12538.9 21717.9i 1.02475 1.77491i
\(532\) −7371.27 −0.600724
\(533\) 40.5420 + 14541.1i 0.00329469 + 1.18170i
\(534\) −8034.26 −0.651080
\(535\) 2676.49 4635.82i 0.216289 0.374624i
\(536\) −547.161 + 947.710i −0.0440928 + 0.0763710i
\(537\) 2895.86 + 5015.78i 0.232711 + 0.403067i
\(538\) 12171.5 0.975369
\(539\) 4958.99 + 8589.22i 0.396287 + 0.686390i
\(540\) −3345.36 5794.33i −0.266595 0.461756i
\(541\) 16831.7 1.33762 0.668809 0.743435i \(-0.266805\pi\)
0.668809 + 0.743435i \(0.266805\pi\)
\(542\) 13003.3 + 22522.5i 1.03052 + 1.78491i
\(543\) 3044.13 5272.59i 0.240582 0.416701i
\(544\) −187.914 + 325.477i −0.0148102 + 0.0256520i
\(545\) −2515.77 −0.197731
\(546\) −49.5009 17754.4i −0.00387993 1.39161i
\(547\) −9560.55 −0.747312 −0.373656 0.927567i \(-0.621896\pi\)
−0.373656 + 0.927567i \(0.621896\pi\)
\(548\) −3983.31 + 6899.30i −0.310508 + 0.537816i
\(549\) 3905.59 6764.69i 0.303619 0.525883i
\(550\) −10530.6 18239.6i −0.816412 1.41407i
\(551\) −8468.64 −0.654766
\(552\) 425.564 + 737.099i 0.0328138 + 0.0568352i
\(553\) −179.460 310.834i −0.0138000 0.0239024i
\(554\) 32626.5 2.50210
\(555\) 2264.20 + 3921.71i 0.173171 + 0.299941i
\(556\) −2117.00 + 3666.75i −0.161476 + 0.279685i
\(557\) 11414.0 19769.5i 0.868267 1.50388i 0.00450060 0.999990i \(-0.498567\pi\)
0.863766 0.503893i \(-0.168099\pi\)
\(558\) −30074.7 −2.28166
\(559\) −17380.0 9969.82i −1.31502 0.754344i
\(560\) −65.0571 −0.00490922
\(561\) −344.972 + 597.509i −0.0259621 + 0.0449677i
\(562\) −13987.7 + 24227.4i −1.04989 + 1.81846i
\(563\) −10814.9 18731.9i −0.809578 1.40223i −0.913157 0.407609i \(-0.866363\pi\)
0.103579 0.994621i \(-0.466971\pi\)
\(564\) −28766.3 −2.14766
\(565\) 470.136 + 814.299i 0.0350066 + 0.0606333i
\(566\) 7702.53 + 13341.2i 0.572016 + 0.990761i
\(567\) 2948.65 0.218398
\(568\) 3069.92 + 5317.25i 0.226780 + 0.392794i
\(569\) 5294.93 9171.09i 0.390114 0.675698i −0.602350 0.798232i \(-0.705769\pi\)
0.992464 + 0.122534i \(0.0391022\pi\)
\(570\) −3347.62 + 5798.25i −0.245994 + 0.426074i
\(571\) −1757.27 −0.128791 −0.0643954 0.997924i \(-0.520512\pi\)
−0.0643954 + 0.997924i \(0.520512\pi\)
\(572\) 20463.1 11890.5i 1.49581 0.869176i
\(573\) 11297.7 0.823679
\(574\) 6765.45 11718.1i 0.491959 0.852097i
\(575\) 261.683 453.247i 0.0189790 0.0328726i
\(576\) 20128.3 + 34863.2i 1.45604 + 2.52193i
\(577\) −13580.6 −0.979840 −0.489920 0.871767i \(-0.662974\pi\)
−0.489920 + 0.871767i \(0.662974\pi\)
\(578\) −11196.2 19392.4i −0.805710 1.39553i
\(579\) 2255.12 + 3905.98i 0.161864 + 0.280357i
\(580\) 5059.49 0.362214
\(581\) 364.081 + 630.607i 0.0259977 + 0.0450293i
\(582\) −23261.6 + 40290.3i −1.65674 + 2.86956i
\(583\) −12076.5 + 20917.0i −0.857900 + 1.48593i
\(584\) −10257.8 −0.726831
\(585\) −5527.86 3171.00i −0.390682 0.224110i
\(586\) 21461.0 1.51288
\(587\) 478.663 829.068i 0.0336568 0.0582952i −0.848706 0.528864i \(-0.822618\pi\)
0.882363 + 0.470569i \(0.155951\pi\)
\(588\) 13991.6 24234.1i 0.981297 1.69966i
\(589\) 4097.75 + 7097.50i 0.286663 + 0.496515i
\(590\) 6632.95 0.462838
\(591\) −13552.6 23473.8i −0.943283 1.63381i
\(592\) −225.013 389.734i −0.0156216 0.0270573i
\(593\) 6729.49 0.466015 0.233007 0.972475i \(-0.425143\pi\)
0.233007 + 0.972475i \(0.425143\pi\)
\(594\) 16729.2 + 28975.8i 1.15557 + 2.00150i
\(595\) −27.0500 + 46.8520i −0.00186377 + 0.00322814i
\(596\) 11594.5 20082.2i 0.796859 1.38020i
\(597\) 10743.4 0.736514
\(598\) 828.785 + 475.423i 0.0566748 + 0.0325109i
\(599\) 2281.52 0.155626 0.0778132 0.996968i \(-0.475206\pi\)
0.0778132 + 0.996968i \(0.475206\pi\)
\(600\) −11153.1 + 19317.8i −0.758874 + 1.31441i
\(601\) −3200.71 + 5543.79i −0.217237 + 0.376266i −0.953962 0.299926i \(-0.903038\pi\)
0.736725 + 0.676192i \(0.236371\pi\)
\(602\) 9322.18 + 16146.5i 0.631136 + 1.09316i
\(603\) −2416.26 −0.163180
\(604\) 2710.37 + 4694.50i 0.182588 + 0.316252i
\(605\) −313.341 542.722i −0.0210564 0.0364707i
\(606\) −38454.7 −2.57775
\(607\) −1389.62 2406.89i −0.0929207 0.160943i 0.815818 0.578308i \(-0.196287\pi\)
−0.908739 + 0.417365i \(0.862954\pi\)
\(608\) 5612.95 9721.92i 0.374400 0.648480i
\(609\) −5841.50 + 10117.8i −0.388685 + 0.673223i
\(610\) 2066.03 0.137133
\(611\) −10481.0 + 6090.22i −0.693969 + 0.403247i
\(612\) 1249.79 0.0825485
\(613\) −11310.4 + 19590.2i −0.745226 + 1.29077i 0.204863 + 0.978791i \(0.434325\pi\)
−0.950089 + 0.311979i \(0.899008\pi\)
\(614\) 11701.5 20267.6i 0.769111 1.33214i
\(615\) −3782.41 6551.33i −0.248002 0.429553i
\(616\) −8266.80 −0.540712
\(617\) −10987.0 19030.1i −0.716889 1.24169i −0.962226 0.272250i \(-0.912232\pi\)
0.245337 0.969438i \(-0.421101\pi\)
\(618\) −37628.7 65174.9i −2.44927 4.24226i
\(619\) 7145.19 0.463957 0.231979 0.972721i \(-0.425480\pi\)
0.231979 + 0.972721i \(0.425480\pi\)
\(620\) −2448.15 4240.32i −0.158581 0.274670i
\(621\) −415.715 + 720.040i −0.0268632 + 0.0465285i
\(622\) 18129.8 31401.7i 1.16871 2.02426i
\(623\) 1939.14 0.124703
\(624\) 855.660 + 490.840i 0.0548939 + 0.0314893i
\(625\) 12730.8 0.814773
\(626\) −19436.5 + 33665.0i −1.24096 + 2.14940i
\(627\) 10304.2 17847.5i 0.656319 1.13678i
\(628\) −8467.00 14665.3i −0.538010 0.931861i
\(629\) −374.231 −0.0237227
\(630\) 2965.01 + 5135.55i 0.187506 + 0.324770i
\(631\) 9441.62 + 16353.4i 0.595666 + 1.03172i 0.993453 + 0.114245i \(0.0364450\pi\)
−0.397787 + 0.917478i \(0.630222\pi\)
\(632\) −823.239 −0.0518144
\(633\) 10993.3 + 19041.0i 0.690278 + 1.19560i
\(634\) −15195.6 + 26319.5i −0.951882 + 1.64871i
\(635\) −871.661 + 1509.76i −0.0544737 + 0.0943512i
\(636\) 68146.4 4.24871
\(637\) −32.8768 11791.9i −0.00204494 0.733457i
\(638\) −25301.1 −1.57003
\(639\) −6778.37 + 11740.5i −0.419637 + 0.726833i
\(640\) −3229.25 + 5593.22i −0.199449 + 0.345456i
\(641\) 1815.54 + 3144.61i 0.111871 + 0.193767i 0.916525 0.399978i \(-0.130982\pi\)
−0.804653 + 0.593745i \(0.797649\pi\)
\(642\) 75526.7 4.64299
\(643\) 5385.98 + 9328.78i 0.330330 + 0.572148i 0.982576 0.185859i \(-0.0595067\pi\)
−0.652247 + 0.758007i \(0.726173\pi\)
\(644\) −273.627 473.935i −0.0167429 0.0289995i
\(645\) 10423.6 0.636327
\(646\) −276.651 479.173i −0.0168493 0.0291839i
\(647\) −7574.14 + 13118.8i −0.460232 + 0.797146i −0.998972 0.0453265i \(-0.985567\pi\)
0.538740 + 0.842472i \(0.318901\pi\)
\(648\) 3381.59 5857.09i 0.205002 0.355074i
\(649\) −20416.7 −1.23487
\(650\) 69.8152 + 25040.6i 0.00421289 + 1.51103i
\(651\) 11306.2 0.680682
\(652\) 23094.9 40001.6i 1.38722 2.40273i
\(653\) −3679.45 + 6372.99i −0.220502 + 0.381921i −0.954961 0.296733i \(-0.904103\pi\)
0.734458 + 0.678654i \(0.237436\pi\)
\(654\) −17747.8 30740.1i −1.06115 1.83797i
\(655\) −3739.11 −0.223052
\(656\) 375.890 + 651.061i 0.0223720 + 0.0387495i
\(657\) −11324.6 19614.7i −0.672471 1.16475i
\(658\) 11279.7 0.668282
\(659\) −14166.6 24537.3i −0.837411 1.45044i −0.892052 0.451932i \(-0.850735\pi\)
0.0546414 0.998506i \(-0.482598\pi\)
\(660\) −6156.16 + 10662.8i −0.363073 + 0.628860i
\(661\) −554.842 + 961.014i −0.0326488 + 0.0565493i −0.881888 0.471459i \(-0.843728\pi\)
0.849239 + 0.528008i \(0.177061\pi\)
\(662\) 17843.8 1.04761
\(663\) 709.260 412.132i 0.0415466 0.0241416i
\(664\) 1670.15 0.0976121
\(665\) 807.978 1399.46i 0.0471159 0.0816071i
\(666\) −20510.1 + 35524.6i −1.19332 + 2.06689i
\(667\) −314.362 544.491i −0.0182491 0.0316083i
\(668\) −43744.1 −2.53369
\(669\) 5191.39 + 8991.75i 0.300016 + 0.519643i
\(670\) −319.545 553.469i −0.0184255 0.0319140i
\(671\) −6359.39 −0.365874
\(672\) −7743.41 13412.0i −0.444507 0.769908i
\(673\) −10489.5 + 18168.4i −0.600806 + 1.04063i 0.391893 + 0.920011i \(0.371820\pi\)
−0.992699 + 0.120616i \(0.961513\pi\)
\(674\) −1430.53 + 2477.75i −0.0817535 + 0.141601i
\(675\) −21790.0 −1.24251
\(676\) −28138.2 + 156.905i −1.60095 + 0.00892722i
\(677\) 30941.9 1.75656 0.878282 0.478142i \(-0.158690\pi\)
0.878282 + 0.478142i \(0.158690\pi\)
\(678\) −6633.27 + 11489.2i −0.375736 + 0.650795i
\(679\) 5614.39 9724.41i 0.317320 0.549615i
\(680\) 62.0433 + 107.462i 0.00349890 + 0.00606027i
\(681\) −7548.64 −0.424764
\(682\) 12242.5 + 21204.6i 0.687375 + 1.19057i
\(683\) −2713.11 4699.24i −0.151997 0.263267i 0.779964 0.625824i \(-0.215237\pi\)
−0.931962 + 0.362557i \(0.881904\pi\)
\(684\) −37330.9 −2.08682
\(685\) −873.236 1512.49i −0.0487075 0.0843638i
\(686\) −12966.4 + 22458.4i −0.721660 + 1.24995i
\(687\) −20342.2 + 35233.8i −1.12970 + 1.95670i
\(688\) −1035.89 −0.0574023
\(689\) 24829.1 14427.5i 1.37288 0.797744i
\(690\) −497.065 −0.0274245
\(691\) 16896.3 29265.3i 0.930199 1.61115i 0.147219 0.989104i \(-0.452968\pi\)
0.782979 0.622048i \(-0.213699\pi\)
\(692\) −14999.3 + 25979.6i −0.823973 + 1.42716i
\(693\) −9126.53 15807.6i −0.500272 0.866496i
\(694\) 17438.9 0.953849
\(695\) −464.096 803.838i −0.0253297 0.0438724i
\(696\) 13398.4 + 23206.6i 0.729689 + 1.26386i
\(697\) 625.164 0.0339738
\(698\) 7778.97 + 13473.6i 0.421831 + 0.730633i
\(699\) 21142.8 36620.3i 1.14405 1.98156i
\(700\) 7171.16 12420.8i 0.387206 0.670661i
\(701\) 6905.96 0.372089 0.186045 0.982541i \(-0.440433\pi\)
0.186045 + 0.982541i \(0.440433\pi\)
\(702\) −110.910 39780.0i −0.00596301 2.13875i
\(703\) 11178.2 0.599707
\(704\) 16387.2 28383.5i 0.877297 1.51952i
\(705\) 3153.12 5461.37i 0.168445 0.291755i
\(706\) −12744.1 22073.5i −0.679366 1.17670i
\(707\) 9281.37 0.493723
\(708\) 28802.5 + 49887.3i 1.52890 + 2.64814i
\(709\) 1003.56 + 1738.22i 0.0531589 + 0.0920739i 0.891380 0.453256i \(-0.149738\pi\)
−0.838221 + 0.545330i \(0.816404\pi\)
\(710\) −3585.70 −0.189534
\(711\) −908.854 1574.18i −0.0479391 0.0830329i
\(712\) 2223.85 3851.83i 0.117054 0.202744i
\(713\) −304.222 + 526.929i −0.0159793 + 0.0276769i
\(714\) −763.312 −0.0400088
\(715\) 14.4655 + 5188.32i 0.000756613 + 0.271374i
\(716\) −8541.38 −0.445819
\(717\) −20875.9 + 36158.1i −1.08734 + 1.88333i
\(718\) 5086.44 8809.98i 0.264379 0.457918i
\(719\) 6393.72 + 11074.3i 0.331635 + 0.574409i 0.982833 0.184499i \(-0.0590664\pi\)
−0.651198 + 0.758908i \(0.725733\pi\)
\(720\) −329.474 −0.0170538
\(721\) 9082.03 + 15730.5i 0.469116 + 0.812532i
\(722\) −7380.35 12783.1i −0.380427 0.658919i
\(723\) 51030.7 2.62497
\(724\) 4489.36 + 7775.80i 0.230450 + 0.399151i
\(725\) 8238.74 14269.9i 0.422040 0.730995i
\(726\) 4421.01 7657.42i 0.226004 0.391451i
\(727\) −6090.70 −0.310717 −0.155359 0.987858i \(-0.549653\pi\)
−0.155359 + 0.987858i \(0.549653\pi\)
\(728\) 8525.64 + 4890.64i 0.434040 + 0.248982i
\(729\) −28693.9 −1.45780
\(730\) 2995.30 5188.01i 0.151864 0.263037i
\(731\) −430.710 + 746.011i −0.0217926 + 0.0377459i
\(732\) 8971.37 + 15538.9i 0.452994 + 0.784608i
\(733\) −38846.5 −1.95747 −0.978737 0.205117i \(-0.934243\pi\)
−0.978737 + 0.205117i \(0.934243\pi\)
\(734\) −19840.8 34365.3i −0.997735 1.72813i
\(735\) 3067.28 + 5312.69i 0.153930 + 0.266614i
\(736\) 833.427 0.0417399
\(737\) 983.585 + 1703.62i 0.0491599 + 0.0851474i
\(738\) 34262.8 59344.8i 1.70898 2.96005i
\(739\) −7228.77 + 12520.6i −0.359830 + 0.623245i −0.987932 0.154887i \(-0.950499\pi\)
0.628102 + 0.778131i \(0.283832\pi\)
\(740\) −6678.29 −0.331755
\(741\) −21185.4 + 12310.3i −1.05029 + 0.610297i
\(742\) −26721.3 −1.32206
\(743\) 638.901 1106.61i 0.0315464 0.0546400i −0.849821 0.527071i \(-0.823290\pi\)
0.881368 + 0.472431i \(0.156623\pi\)
\(744\) 12966.2 22458.1i 0.638931 1.10666i
\(745\) 2541.78 + 4402.49i 0.124998 + 0.216503i
\(746\) −50013.7 −2.45460
\(747\) 1843.84 + 3193.63i 0.0903116 + 0.156424i
\(748\) −508.750 881.181i −0.0248687 0.0430738i
\(749\) −18229.0 −0.889285
\(750\) −13465.4 23322.8i −0.655584 1.13551i
\(751\) 6503.93 11265.1i 0.316021 0.547364i −0.663633 0.748058i \(-0.730986\pi\)
0.979654 + 0.200694i \(0.0643197\pi\)
\(752\) −313.353 + 542.743i −0.0151952 + 0.0263189i
\(753\) 50425.5 2.44038
\(754\) 26093.3 + 14968.1i 1.26029 + 0.722952i
\(755\) −1188.35 −0.0572829
\(756\) −11392.3 + 19732.0i −0.548060 + 0.949268i
\(757\) 5361.61 9286.57i 0.257425 0.445874i −0.708126 0.706086i \(-0.750459\pi\)
0.965551 + 0.260212i \(0.0837926\pi\)
\(758\) 31725.9 + 54950.8i 1.52023 + 2.63312i
\(759\) 1530.00 0.0731694
\(760\) −1853.22 3209.87i −0.0884518 0.153203i
\(761\) −6810.90 11796.8i −0.324435 0.561938i 0.656963 0.753923i \(-0.271841\pi\)
−0.981398 + 0.191985i \(0.938508\pi\)
\(762\) −24597.0 −1.16936
\(763\) 4283.59 + 7419.40i 0.203246 + 0.352032i
\(764\) −8330.68 + 14429.2i −0.394494 + 0.683284i
\(765\) −136.991 + 237.276i −0.00647443 + 0.0112140i
\(766\) 2256.84 0.106453
\(767\) 21056.0 + 12078.5i 0.991250 + 0.568619i
\(768\) −33365.0 −1.56765
\(769\) 4247.57 7357.01i 0.199183 0.344994i −0.749081 0.662478i \(-0.769505\pi\)
0.948264 + 0.317484i \(0.102838\pi\)
\(770\) 2413.93 4181.05i 0.112977 0.195681i
\(771\) 5192.82 + 8994.22i 0.242561 + 0.420128i
\(772\) −6651.50 −0.310094
\(773\) −17131.3 29672.2i −0.797113 1.38064i −0.921489 0.388405i \(-0.873026\pi\)
0.124375 0.992235i \(-0.460307\pi\)
\(774\) 47211.0 + 81771.9i 2.19246 + 3.79745i
\(775\) −15946.0 −0.739094
\(776\) −12877.5 22304.4i −0.595714 1.03181i
\(777\) 7710.50 13355.0i 0.356001 0.616612i
\(778\) −9443.48 + 16356.6i −0.435174 + 0.753743i
\(779\) −18673.5 −0.858854
\(780\) 12657.0 7354.65i