Properties

Label 13.4.c.b.3.2
Level 13
Weight 4
Character 13.3
Analytic conductor 0.767
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 13.c (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.767024830075\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3.2
Root \(1.28078 - 2.21837i\)
Character \(\chi\) = 13.3
Dual form 13.4.c.b.9.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(2.28078 + 3.95042i) q^{2}\) \(+(-4.34233 - 7.52113i) q^{3}\) \(+(-6.40388 + 11.0918i) q^{4}\) \(+2.80776 q^{5}\) \(+(19.8078 - 34.3081i) q^{6}\) \(+(-4.78078 + 8.28055i) q^{7}\) \(-21.9309 q^{8}\) \(+(-24.2116 + 41.9358i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(2.28078 + 3.95042i) q^{2}\) \(+(-4.34233 - 7.52113i) q^{3}\) \(+(-6.40388 + 11.0918i) q^{4}\) \(+2.80776 q^{5}\) \(+(19.8078 - 34.3081i) q^{6}\) \(+(-4.78078 + 8.28055i) q^{7}\) \(-21.9309 q^{8}\) \(+(-24.2116 + 41.9358i) q^{9}\) \(+(6.40388 + 11.0918i) q^{10}\) \(+(-19.7116 - 34.1416i) q^{11}\) \(+111.231 q^{12}\) \(+(40.5270 + 23.5492i) q^{13}\) \(-43.6155 q^{14}\) \(+(-12.1922 - 21.1176i) q^{15}\) \(+(1.21165 + 2.09863i) q^{16}\) \(+(-1.00758 + 1.74518i) q^{17}\) \(-220.885 q^{18}\) \(+(30.0961 - 52.1280i) q^{19}\) \(+(-17.9806 + 31.1433i) q^{20}\) \(+83.0388 q^{21}\) \(+(89.9157 - 155.739i) q^{22}\) \(+(-2.23438 - 3.87006i) q^{23}\) \(+(95.2311 + 164.945i) q^{24}\) \(-117.116 q^{25}\) \(+(-0.596118 + 213.809i) q^{26}\) \(+186.054 q^{27}\) \(+(-61.2311 - 106.055i) q^{28}\) \(+(-70.3466 - 121.844i) q^{29}\) \(+(55.6155 - 96.3289i) q^{30}\) \(+136.155 q^{31}\) \(+(-93.2505 + 161.515i) q^{32}\) \(+(-171.189 + 296.508i) q^{33}\) \(-9.19224 q^{34}\) \(+(-13.4233 + 23.2498i) q^{35}\) \(+(-310.097 - 537.104i) q^{36}\) \(+(92.8542 + 160.828i) q^{37}\) \(+274.570 q^{38}\) \(+(1.13494 - 407.067i) q^{39}\) \(-61.5767 q^{40}\) \(+(-155.116 - 268.668i) q^{41}\) \(+(189.393 + 328.038i) q^{42}\) \(+(-213.735 + 370.200i) q^{43}\) \(+504.924 q^{44}\) \(+(-67.9806 + 117.746i) q^{45}\) \(+(10.1922 - 17.6535i) q^{46}\) \(-258.617 q^{47}\) \(+(10.5227 - 18.2259i) q^{48}\) \(+(125.788 + 217.872i) q^{49}\) \(+(-267.116 - 462.659i) q^{50}\) \(+17.5009 q^{51}\) \(+(-520.734 + 298.713i) q^{52}\) \(+612.656 q^{53}\) \(+(424.348 + 734.991i) q^{54}\) \(+(-55.3457 - 95.8615i) q^{55}\) \(+(104.847 - 181.600i) q^{56}\) \(-522.749 q^{57}\) \(+(320.890 - 555.797i) q^{58}\) \(+(258.943 - 448.502i) q^{59}\) \(+312.311 q^{60}\) \(+(80.6553 - 139.699i) q^{61}\) \(+(310.540 + 537.871i) q^{62}\) \(+(-231.501 - 400.971i) q^{63}\) \(-831.348 q^{64}\) \(+(113.790 + 66.1205i) q^{65}\) \(-1561.77 q^{66}\) \(+(24.9493 + 43.2135i) q^{67}\) \(+(-12.9048 - 22.3518i) q^{68}\) \(+(-19.4048 + 33.6101i) q^{69}\) \(-122.462 q^{70}\) \(+(-139.982 + 242.455i) q^{71}\) \(+(530.982 - 919.689i) q^{72}\) \(+467.732 q^{73}\) \(+(-423.559 + 733.626i) q^{74}\) \(+(508.558 + 880.849i) q^{75}\) \(+(385.464 + 667.643i) q^{76}\) \(+376.948 q^{77}\) \(+(1610.68 - 923.946i) q^{78}\) \(+37.5379 q^{79}\) \(+(3.40202 + 5.89247i) q^{80}\) \(+(-154.193 - 267.070i) q^{81}\) \(+(707.568 - 1225.54i) q^{82}\) \(-76.1553 q^{83}\) \(+(-531.771 + 921.054i) q^{84}\) \(+(-2.82904 + 4.90004i) q^{85}\) \(-1949.93 q^{86}\) \(+(-610.936 + 1058.17i) q^{87}\) \(+(432.294 + 748.754i) q^{88}\) \(+(-101.403 - 175.635i) q^{89}\) \(-620.194 q^{90}\) \(+(-388.750 + 223.002i) q^{91}\) \(+57.2348 q^{92}\) \(+(-591.231 - 1024.04i) q^{93}\) \(+(-589.848 - 1021.65i) q^{94}\) \(+(84.5028 - 146.363i) q^{95}\) \(+1619.70 q^{96}\) \(+(587.184 - 1017.03i) q^{97}\) \(+(-573.790 + 993.834i) q^{98}\) \(+1909.01 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 38q^{6} \) \(\mathstrut -\mathstrut 15q^{7} \) \(\mathstrut -\mathstrut 30q^{8} \) \(\mathstrut -\mathstrut 35q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 38q^{6} \) \(\mathstrut -\mathstrut 15q^{7} \) \(\mathstrut -\mathstrut 30q^{8} \) \(\mathstrut -\mathstrut 35q^{9} \) \(\mathstrut +\mathstrut 5q^{10} \) \(\mathstrut -\mathstrut 17q^{11} \) \(\mathstrut +\mathstrut 280q^{12} \) \(\mathstrut +\mathstrut 125q^{13} \) \(\mathstrut -\mathstrut 92q^{14} \) \(\mathstrut -\mathstrut 90q^{15} \) \(\mathstrut -\mathstrut 57q^{16} \) \(\mathstrut -\mathstrut 70q^{17} \) \(\mathstrut -\mathstrut 430q^{18} \) \(\mathstrut +\mathstrut 141q^{19} \) \(\mathstrut -\mathstrut 175q^{20} \) \(\mathstrut +\mathstrut 126q^{21} \) \(\mathstrut +\mathstrut 170q^{22} \) \(\mathstrut -\mathstrut 145q^{23} \) \(\mathstrut +\mathstrut 216q^{24} \) \(\mathstrut +\mathstrut 150q^{25} \) \(\mathstrut -\mathstrut 23q^{26} \) \(\mathstrut +\mathstrut 670q^{27} \) \(\mathstrut -\mathstrut 80q^{28} \) \(\mathstrut -\mathstrut 34q^{29} \) \(\mathstrut +\mathstrut 140q^{30} \) \(\mathstrut -\mathstrut 280q^{31} \) \(\mathstrut -\mathstrut 105q^{32} \) \(\mathstrut -\mathstrut 425q^{33} \) \(\mathstrut -\mathstrut 78q^{34} \) \(\mathstrut +\mathstrut 70q^{35} \) \(\mathstrut -\mathstrut 725q^{36} \) \(\mathstrut +\mathstrut 190q^{37} \) \(\mathstrut +\mathstrut 620q^{38} \) \(\mathstrut -\mathstrut 181q^{39} \) \(\mathstrut -\mathstrut 370q^{40} \) \(\mathstrut -\mathstrut 538q^{41} \) \(\mathstrut +\mathstrut 370q^{42} \) \(\mathstrut -\mathstrut 455q^{43} \) \(\mathstrut +\mathstrut 1360q^{44} \) \(\mathstrut -\mathstrut 375q^{45} \) \(\mathstrut +\mathstrut 82q^{46} \) \(\mathstrut +\mathstrut 120q^{47} \) \(\mathstrut +\mathstrut 240q^{48} \) \(\mathstrut +\mathstrut 565q^{49} \) \(\mathstrut -\mathstrut 450q^{50} \) \(\mathstrut -\mathstrut 466q^{51} \) \(\mathstrut -\mathstrut 310q^{52} \) \(\mathstrut +\mathstrut 1090q^{53} \) \(\mathstrut +\mathstrut 914q^{54} \) \(\mathstrut -\mathstrut 510q^{55} \) \(\mathstrut +\mathstrut 172q^{56} \) \(\mathstrut -\mathstrut 450q^{57} \) \(\mathstrut +\mathstrut 595q^{58} \) \(\mathstrut +\mathstrut 809q^{59} \) \(\mathstrut -\mathstrut 400q^{60} \) \(\mathstrut -\mathstrut 502q^{61} \) \(\mathstrut +\mathstrut 500q^{62} \) \(\mathstrut -\mathstrut 390q^{63} \) \(\mathstrut -\mathstrut 2542q^{64} \) \(\mathstrut -\mathstrut 555q^{65} \) \(\mathstrut -\mathstrut 3196q^{66} \) \(\mathstrut +\mathstrut 475q^{67} \) \(\mathstrut +\mathstrut 505q^{68} \) \(\mathstrut +\mathstrut 479q^{69} \) \(\mathstrut -\mathstrut 160q^{70} \) \(\mathstrut -\mathstrut 127q^{71} \) \(\mathstrut +\mathstrut 1155q^{72} \) \(\mathstrut +\mathstrut 1170q^{73} \) \(\mathstrut -\mathstrut 849q^{74} \) \(\mathstrut +\mathstrut 1725q^{75} \) \(\mathstrut +\mathstrut 140q^{76} \) \(\mathstrut +\mathstrut 510q^{77} \) \(\mathstrut +\mathstrut 3070q^{78} \) \(\mathstrut +\mathstrut 480q^{79} \) \(\mathstrut +\mathstrut 1065q^{80} \) \(\mathstrut -\mathstrut 122q^{81} \) \(\mathstrut +\mathstrut 1515q^{82} \) \(\mathstrut +\mathstrut 520q^{83} \) \(\mathstrut -\mathstrut 1220q^{84} \) \(\mathstrut +\mathstrut 1205q^{85} \) \(\mathstrut -\mathstrut 3924q^{86} \) \(\mathstrut -\mathstrut 1615q^{87} \) \(\mathstrut +\mathstrut 1020q^{88} \) \(\mathstrut -\mathstrut 921q^{89} \) \(\mathstrut -\mathstrut 1450q^{90} \) \(\mathstrut -\mathstrut 1287q^{91} \) \(\mathstrut -\mathstrut 2080q^{92} \) \(\mathstrut -\mathstrut 2200q^{93} \) \(\mathstrut -\mathstrut 1040q^{94} \) \(\mathstrut -\mathstrut 1270q^{95} \) \(\mathstrut +\mathstrut 3840q^{96} \) \(\mathstrut +\mathstrut 415q^{97} \) \(\mathstrut -\mathstrut 1285q^{98} \) \(\mathstrut +\mathstrut 4420q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.28078 + 3.95042i 0.806376 + 1.39668i 0.915358 + 0.402641i \(0.131908\pi\)
−0.108982 + 0.994044i \(0.534759\pi\)
\(3\) −4.34233 7.52113i −0.835682 1.44744i −0.893474 0.449114i \(-0.851740\pi\)
0.0577926 0.998329i \(-0.481594\pi\)
\(4\) −6.40388 + 11.0918i −0.800485 + 1.38648i
\(5\) 2.80776 0.251134 0.125567 0.992085i \(-0.459925\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 19.8078 34.3081i 1.34775 2.33437i
\(7\) −4.78078 + 8.28055i −0.258138 + 0.447108i −0.965743 0.259500i \(-0.916442\pi\)
0.707605 + 0.706608i \(0.249775\pi\)
\(8\) −21.9309 −0.969217
\(9\) −24.2116 + 41.9358i −0.896728 + 1.55318i
\(10\) 6.40388 + 11.0918i 0.202509 + 0.350755i
\(11\) −19.7116 34.1416i −0.540299 0.935825i −0.998887 0.0471757i \(-0.984978\pi\)
0.458588 0.888649i \(-0.348355\pi\)
\(12\) 111.231 2.67580
\(13\) 40.5270 + 23.5492i 0.864628 + 0.502413i
\(14\) −43.6155 −0.832624
\(15\) −12.1922 21.1176i −0.209868 0.363502i
\(16\) 1.21165 + 2.09863i 0.0189320 + 0.0327911i
\(17\) −1.00758 + 1.74518i −0.0143749 + 0.0248981i −0.873123 0.487499i \(-0.837909\pi\)
0.858748 + 0.512397i \(0.171242\pi\)
\(18\) −220.885 −2.89240
\(19\) 30.0961 52.1280i 0.363396 0.629420i −0.625121 0.780528i \(-0.714951\pi\)
0.988517 + 0.151107i \(0.0482839\pi\)
\(20\) −17.9806 + 31.1433i −0.201029 + 0.348193i
\(21\) 83.0388 0.862884
\(22\) 89.9157 155.739i 0.871368 1.50925i
\(23\) −2.23438 3.87006i −0.0202565 0.0350853i 0.855719 0.517440i \(-0.173115\pi\)
−0.875976 + 0.482355i \(0.839782\pi\)
\(24\) 95.2311 + 164.945i 0.809957 + 1.40289i
\(25\) −117.116 −0.936932
\(26\) −0.596118 + 213.809i −0.00449648 + 1.61275i
\(27\) 186.054 1.32615
\(28\) −61.2311 106.055i −0.413271 0.715806i
\(29\) −70.3466 121.844i −0.450449 0.780201i 0.547964 0.836502i \(-0.315403\pi\)
−0.998414 + 0.0563003i \(0.982070\pi\)
\(30\) 55.6155 96.3289i 0.338465 0.586239i
\(31\) 136.155 0.788845 0.394423 0.918929i \(-0.370945\pi\)
0.394423 + 0.918929i \(0.370945\pi\)
\(32\) −93.2505 + 161.515i −0.515141 + 0.892250i
\(33\) −171.189 + 296.508i −0.903035 + 1.56410i
\(34\) −9.19224 −0.0463663
\(35\) −13.4233 + 23.2498i −0.0648272 + 0.112284i
\(36\) −310.097 537.104i −1.43563 2.48659i
\(37\) 92.8542 + 160.828i 0.412571 + 0.714594i 0.995170 0.0981657i \(-0.0312975\pi\)
−0.582599 + 0.812760i \(0.697964\pi\)
\(38\) 274.570 1.17214
\(39\) 1.13494 407.067i 0.00465989 1.67136i
\(40\) −61.5767 −0.243403
\(41\) −155.116 268.668i −0.590853 1.02339i −0.994118 0.108304i \(-0.965458\pi\)
0.403265 0.915083i \(-0.367875\pi\)
\(42\) 189.393 + 328.038i 0.695809 + 1.20518i
\(43\) −213.735 + 370.200i −0.758008 + 1.31291i 0.185857 + 0.982577i \(0.440494\pi\)
−0.943865 + 0.330331i \(0.892840\pi\)
\(44\) 504.924 1.73000
\(45\) −67.9806 + 117.746i −0.225199 + 0.390056i
\(46\) 10.1922 17.6535i 0.0326688 0.0565840i
\(47\) −258.617 −0.802622 −0.401311 0.915942i \(-0.631445\pi\)
−0.401311 + 0.915942i \(0.631445\pi\)
\(48\) 10.5227 18.2259i 0.0316422 0.0548059i
\(49\) 125.788 + 217.872i 0.366730 + 0.635195i
\(50\) −267.116 462.659i −0.755519 1.30860i
\(51\) 17.5009 0.0480514
\(52\) −520.734 + 298.713i −1.38871 + 0.796617i
\(53\) 612.656 1.58783 0.793913 0.608031i \(-0.208040\pi\)
0.793913 + 0.608031i \(0.208040\pi\)
\(54\) 424.348 + 734.991i 1.06938 + 1.85222i
\(55\) −55.3457 95.8615i −0.135687 0.235017i
\(56\) 104.847 181.600i 0.250191 0.433344i
\(57\) −522.749 −1.21473
\(58\) 320.890 555.797i 0.726463 1.25827i
\(59\) 258.943 448.502i 0.571381 0.989661i −0.425044 0.905173i \(-0.639741\pi\)
0.996425 0.0844878i \(-0.0269254\pi\)
\(60\) 312.311 0.671985
\(61\) 80.6553 139.699i 0.169293 0.293223i −0.768879 0.639395i \(-0.779185\pi\)
0.938171 + 0.346171i \(0.112518\pi\)
\(62\) 310.540 + 537.871i 0.636106 + 1.10177i
\(63\) −231.501 400.971i −0.462958 0.801867i
\(64\) −831.348 −1.62373
\(65\) 113.790 + 66.1205i 0.217138 + 0.126173i
\(66\) −1561.77 −2.91274
\(67\) 24.9493 + 43.2135i 0.0454933 + 0.0787966i 0.887875 0.460084i \(-0.152181\pi\)
−0.842382 + 0.538881i \(0.818847\pi\)
\(68\) −12.9048 22.3518i −0.0230138 0.0398611i
\(69\) −19.4048 + 33.6101i −0.0338560 + 0.0586403i
\(70\) −122.462 −0.209100
\(71\) −139.982 + 242.455i −0.233982 + 0.405269i −0.958976 0.283486i \(-0.908509\pi\)
0.724994 + 0.688755i \(0.241842\pi\)
\(72\) 530.982 919.689i 0.869123 1.50537i
\(73\) 467.732 0.749916 0.374958 0.927042i \(-0.377657\pi\)
0.374958 + 0.927042i \(0.377657\pi\)
\(74\) −423.559 + 733.626i −0.665375 + 1.15246i
\(75\) 508.558 + 880.849i 0.782977 + 1.35616i
\(76\) 385.464 + 667.643i 0.581786 + 1.00768i
\(77\) 376.948 0.557886
\(78\) 1610.68 923.946i 2.33812 1.34123i
\(79\) 37.5379 0.0534600 0.0267300 0.999643i \(-0.491491\pi\)
0.0267300 + 0.999643i \(0.491491\pi\)
\(80\) 3.40202 + 5.89247i 0.00475446 + 0.00823497i
\(81\) −154.193 267.070i −0.211513 0.366352i
\(82\) 707.568 1225.54i 0.952900 1.65047i
\(83\) −76.1553 −0.100712 −0.0503562 0.998731i \(-0.516036\pi\)
−0.0503562 + 0.998731i \(0.516036\pi\)
\(84\) −531.771 + 921.054i −0.690726 + 1.19637i
\(85\) −2.82904 + 4.90004i −0.00361003 + 0.00625275i
\(86\) −1949.93 −2.44496
\(87\) −610.936 + 1058.17i −0.752865 + 1.30400i
\(88\) 432.294 + 748.754i 0.523666 + 0.907017i
\(89\) −101.403 175.635i −0.120772 0.209183i 0.799300 0.600932i \(-0.205204\pi\)
−0.920072 + 0.391749i \(0.871870\pi\)
\(90\) −620.194 −0.726380
\(91\) −388.750 + 223.002i −0.447826 + 0.256890i
\(92\) 57.2348 0.0648602
\(93\) −591.231 1024.04i −0.659224 1.14181i
\(94\) −589.848 1021.65i −0.647215 1.12101i
\(95\) 84.5028 146.363i 0.0912611 0.158069i
\(96\) 1619.70 1.72198
\(97\) 587.184 1017.03i 0.614634 1.06458i −0.375814 0.926695i \(-0.622637\pi\)
0.990449 0.137883i \(-0.0440297\pi\)
\(98\) −573.790 + 993.834i −0.591445 + 1.02441i
\(99\) 1909.01 1.93800
\(100\) 750.000 1299.04i 0.750000 1.29904i
\(101\) −485.348 840.648i −0.478158 0.828194i 0.521528 0.853234i \(-0.325362\pi\)
−0.999686 + 0.0250397i \(0.992029\pi\)
\(102\) 39.9157 + 69.1360i 0.0387475 + 0.0671126i
\(103\) −1899.70 −1.81731 −0.908654 0.417550i \(-0.862889\pi\)
−0.908654 + 0.417550i \(0.862889\pi\)
\(104\) −888.792 516.454i −0.838012 0.486947i
\(105\) 233.153 0.216699
\(106\) 1397.33 + 2420.25i 1.28039 + 2.21769i
\(107\) 953.247 + 1651.07i 0.861251 + 1.49173i 0.870722 + 0.491775i \(0.163652\pi\)
−0.00947163 + 0.999955i \(0.503015\pi\)
\(108\) −1191.47 + 2063.68i −1.06157 + 1.83868i
\(109\) −896.004 −0.787354 −0.393677 0.919249i \(-0.628797\pi\)
−0.393677 + 0.919249i \(0.628797\pi\)
\(110\) 252.462 437.277i 0.218830 0.379025i
\(111\) 806.407 1396.74i 0.689556 1.19435i
\(112\) −23.1704 −0.0195482
\(113\) 167.441 290.017i 0.139394 0.241438i −0.787873 0.615837i \(-0.788818\pi\)
0.927267 + 0.374400i \(0.122151\pi\)
\(114\) −1192.27 2065.08i −0.979532 1.69660i
\(115\) −6.27361 10.8662i −0.00508710 0.00881112i
\(116\) 1801.96 1.44231
\(117\) −1968.78 + 1129.37i −1.55567 + 0.892394i
\(118\) 2362.36 1.84299
\(119\) −9.63401 16.6866i −0.00742141 0.0128543i
\(120\) 267.386 + 463.127i 0.203408 + 0.352312i
\(121\) −111.598 + 193.293i −0.0838452 + 0.145224i
\(122\) 735.827 0.546054
\(123\) −1347.13 + 2333.29i −0.987530 + 1.71045i
\(124\) −871.922 + 1510.21i −0.631459 + 1.09372i
\(125\) −679.806 −0.486430
\(126\) 1056.00 1829.05i 0.746637 1.29321i
\(127\) −310.447 537.709i −0.216911 0.375701i 0.736951 0.675946i \(-0.236265\pi\)
−0.953862 + 0.300245i \(0.902931\pi\)
\(128\) −1150.11 1992.06i −0.794193 1.37558i
\(129\) 3712.44 2.53381
\(130\) −1.67376 + 600.325i −0.00112922 + 0.405015i
\(131\) −1331.70 −0.888180 −0.444090 0.895982i \(-0.646473\pi\)
−0.444090 + 0.895982i \(0.646473\pi\)
\(132\) −2192.55 3797.60i −1.44573 2.50408i
\(133\) 287.766 + 498.425i 0.187612 + 0.324954i
\(134\) −113.808 + 197.121i −0.0733694 + 0.127079i
\(135\) 522.396 0.333042
\(136\) 22.0971 38.2732i 0.0139324 0.0241316i
\(137\) −311.008 + 538.681i −0.193950 + 0.335932i −0.946556 0.322540i \(-0.895463\pi\)
0.752606 + 0.658471i \(0.228797\pi\)
\(138\) −177.032 −0.109203
\(139\) −165.290 + 286.291i −0.100861 + 0.174697i −0.912040 0.410102i \(-0.865493\pi\)
0.811178 + 0.584799i \(0.198827\pi\)
\(140\) −171.922 297.778i −0.103786 0.179763i
\(141\) 1123.00 + 1945.10i 0.670736 + 1.16175i
\(142\) −1277.07 −0.754711
\(143\) 5.15196 1847.85i 0.00301279 1.08059i
\(144\) −117.344 −0.0679073
\(145\) −197.517 342.109i −0.113123 0.195935i
\(146\) 1066.79 + 1847.74i 0.604715 + 1.04740i
\(147\) 1092.43 1892.14i 0.612939 1.06164i
\(148\) −2378.51 −1.32103
\(149\) 905.269 1567.97i 0.497735 0.862102i −0.502262 0.864716i \(-0.667499\pi\)
0.999997 + 0.00261337i \(0.000831864\pi\)
\(150\) −2319.82 + 4018.04i −1.26275 + 2.18714i
\(151\) −423.239 −0.228097 −0.114049 0.993475i \(-0.536382\pi\)
−0.114049 + 0.993475i \(0.536382\pi\)
\(152\) −660.034 + 1143.21i −0.352209 + 0.610045i
\(153\) −48.7902 84.5071i −0.0257808 0.0446536i
\(154\) 859.734 + 1489.10i 0.449866 + 0.779190i
\(155\) 382.292 0.198106
\(156\) 4507.86 + 2619.40i 2.31357 + 1.34436i
\(157\) 1322.17 0.672105 0.336052 0.941843i \(-0.390908\pi\)
0.336052 + 0.941843i \(0.390908\pi\)
\(158\) 85.6155 + 148.290i 0.0431089 + 0.0746668i
\(159\) −2660.35 4607.87i −1.32692 2.29829i
\(160\) −261.825 + 453.495i −0.129369 + 0.224074i
\(161\) 42.7283 0.0209159
\(162\) 703.360 1218.26i 0.341119 0.590835i
\(163\) 1803.20 3123.23i 0.866486 1.50080i 0.000922205 1.00000i \(-0.499706\pi\)
0.865564 0.500798i \(-0.166960\pi\)
\(164\) 3973.37 1.89188
\(165\) −480.658 + 832.524i −0.226783 + 0.392800i
\(166\) −173.693 300.845i −0.0812121 0.140663i
\(167\) 1707.72 + 2957.85i 0.791300 + 1.37057i 0.925162 + 0.379571i \(0.123929\pi\)
−0.133863 + 0.991000i \(0.542738\pi\)
\(168\) −1821.11 −0.836321
\(169\) 1087.87 + 1908.75i 0.495163 + 0.868800i
\(170\) −25.8096 −0.0116442
\(171\) 1457.35 + 2524.21i 0.651734 + 1.12884i
\(172\) −2737.47 4741.44i −1.21355 2.10193i
\(173\) −1171.11 + 2028.43i −0.514671 + 0.891436i 0.485184 + 0.874412i \(0.338753\pi\)
−0.999855 + 0.0170243i \(0.994581\pi\)
\(174\) −5573.63 −2.42837
\(175\) 559.908 969.788i 0.241857 0.418909i
\(176\) 47.7671 82.7350i 0.0204578 0.0354340i
\(177\) −4497.66 −1.90997
\(178\) 462.555 801.169i 0.194775 0.337360i
\(179\) 333.446 + 577.545i 0.139234 + 0.241160i 0.927207 0.374550i \(-0.122203\pi\)
−0.787973 + 0.615710i \(0.788869\pi\)
\(180\) −870.679 1508.06i −0.360537 0.624468i
\(181\) −701.037 −0.287888 −0.143944 0.989586i \(-0.545978\pi\)
−0.143944 + 0.989586i \(0.545978\pi\)
\(182\) −1767.61 1027.11i −0.719910 0.418321i
\(183\) −1400.93 −0.565899
\(184\) 49.0019 + 84.8737i 0.0196330 + 0.0340053i
\(185\) 260.713 + 451.567i 0.103611 + 0.179459i
\(186\) 2696.93 4671.22i 1.06316 1.84146i
\(187\) 79.4440 0.0310670
\(188\) 1656.16 2868.55i 0.642487 1.11282i
\(189\) −889.482 + 1540.63i −0.342330 + 0.592933i
\(190\) 770.928 0.294363
\(191\) −650.440 + 1126.59i −0.246409 + 0.426793i −0.962527 0.271186i \(-0.912584\pi\)
0.716118 + 0.697980i \(0.245917\pi\)
\(192\) 3609.98 + 6252.68i 1.35692 + 2.35025i
\(193\) 259.667 + 449.756i 0.0968457 + 0.167742i 0.910377 0.413779i \(-0.135791\pi\)
−0.813532 + 0.581521i \(0.802458\pi\)
\(194\) 5356.94 1.98251
\(195\) 3.18664 1142.95i 0.00117026 0.419735i
\(196\) −3222.14 −1.17425
\(197\) −1560.52 2702.91i −0.564379 0.977534i −0.997107 0.0760091i \(-0.975782\pi\)
0.432728 0.901525i \(-0.357551\pi\)
\(198\) 4354.01 + 7541.38i 1.56276 + 2.70678i
\(199\) −618.529 + 1071.32i −0.220333 + 0.381629i −0.954909 0.296898i \(-0.904048\pi\)
0.734576 + 0.678527i \(0.237381\pi\)
\(200\) 2568.47 0.908090
\(201\) 216.677 375.295i 0.0760358 0.131698i
\(202\) 2213.94 3834.66i 0.771151 1.33567i
\(203\) 1345.25 0.465112
\(204\) −112.074 + 194.118i −0.0384644 + 0.0666223i
\(205\) −435.528 754.356i −0.148383 0.257007i
\(206\) −4332.78 7504.60i −1.46543 2.53821i
\(207\) 216.392 0.0726584
\(208\) −0.316683 + 113.585i −0.000105568 + 0.0378638i
\(209\) −2372.98 −0.785369
\(210\) 531.771 + 921.054i 0.174741 + 0.302661i
\(211\) 1265.83 + 2192.49i 0.413003 + 0.715342i 0.995217 0.0976940i \(-0.0311466\pi\)
−0.582214 + 0.813036i \(0.697813\pi\)
\(212\) −3923.38 + 6795.49i −1.27103 + 2.20149i
\(213\) 2431.38 0.782139
\(214\) −4348.28 + 7531.45i −1.38898 + 2.40579i
\(215\) −600.118 + 1039.44i −0.190362 + 0.329716i
\(216\) −4080.33 −1.28533
\(217\) −650.928 + 1127.44i −0.203631 + 0.352699i
\(218\) −2043.58 3539.59i −0.634904 1.09969i
\(219\) −2031.05 3517.88i −0.626691 1.08546i
\(220\) 1417.71 0.434463
\(221\) −81.9315 + 46.9991i −0.0249381 + 0.0143054i
\(222\) 7356.93 2.22417
\(223\) 597.766 + 1035.36i 0.179504 + 0.310910i 0.941711 0.336424i \(-0.109217\pi\)
−0.762207 + 0.647333i \(0.775884\pi\)
\(224\) −891.619 1544.33i −0.265955 0.460647i
\(225\) 2835.58 4911.37i 0.840173 1.45522i
\(226\) 1527.58 0.449617
\(227\) 434.596 752.742i 0.127071 0.220094i −0.795469 0.605994i \(-0.792776\pi\)
0.922541 + 0.385900i \(0.126109\pi\)
\(228\) 3347.62 5798.25i 0.972376 1.68420i
\(229\) 4684.64 1.35183 0.675916 0.736978i \(-0.263748\pi\)
0.675916 + 0.736978i \(0.263748\pi\)
\(230\) 28.6174 49.5668i 0.00820424 0.0142102i
\(231\) −1636.83 2835.08i −0.466215 0.807508i
\(232\) 1542.76 + 2672.14i 0.436583 + 0.756184i
\(233\) −4868.99 −1.36900 −0.684502 0.729011i \(-0.739980\pi\)
−0.684502 + 0.729011i \(0.739980\pi\)
\(234\) −8951.82 5201.67i −2.50085 1.45318i
\(235\) −726.137 −0.201566
\(236\) 3316.48 + 5744.31i 0.914764 + 1.58442i
\(237\) −163.002 282.328i −0.0446756 0.0773803i
\(238\) 43.9460 76.1167i 0.0119689 0.0207307i
\(239\) 4807.53 1.30114 0.650572 0.759444i \(-0.274529\pi\)
0.650572 + 0.759444i \(0.274529\pi\)
\(240\) 29.5454 51.1740i 0.00794643 0.0137636i
\(241\) −2937.98 + 5088.73i −0.785278 + 1.36014i 0.143555 + 0.989642i \(0.454147\pi\)
−0.928833 + 0.370499i \(0.879187\pi\)
\(242\) −1018.12 −0.270443
\(243\) 1172.61 2031.03i 0.309561 0.536175i
\(244\) 1033.01 + 1789.23i 0.271033 + 0.469442i
\(245\) 353.184 + 611.733i 0.0920984 + 0.159519i
\(246\) −12290.0 −3.18528
\(247\) 2447.28 1403.85i 0.630431 0.361640i
\(248\) −2986.00 −0.764562
\(249\) 330.691 + 572.774i 0.0841635 + 0.145775i
\(250\) −1550.49 2685.52i −0.392245 0.679389i
\(251\) −2903.13 + 5028.38i −0.730057 + 1.26450i 0.226802 + 0.973941i \(0.427173\pi\)
−0.956858 + 0.290554i \(0.906160\pi\)
\(252\) 5930.02 1.48237
\(253\) −88.0866 + 152.570i −0.0218891 + 0.0379131i
\(254\) 1416.12 2452.79i 0.349823 0.605912i
\(255\) 49.1385 0.0120673
\(256\) 1920.92 3327.12i 0.468974 0.812286i
\(257\) 597.930 + 1035.65i 0.145128 + 0.251369i 0.929421 0.369022i \(-0.120307\pi\)
−0.784293 + 0.620391i \(0.786974\pi\)
\(258\) 8467.24 + 14665.7i 2.04321 + 3.53894i
\(259\) −1775.66 −0.426001
\(260\) −1462.10 + 838.716i −0.348752 + 0.200058i
\(261\) 6812.83 1.61572
\(262\) −3037.32 5260.79i −0.716207 1.24051i
\(263\) −117.092 202.810i −0.0274533 0.0475505i 0.851972 0.523587i \(-0.175406\pi\)
−0.879426 + 0.476036i \(0.842073\pi\)
\(264\) 3754.32 6502.68i 0.875237 1.51595i
\(265\) 1720.19 0.398757
\(266\) −1312.66 + 2273.59i −0.302572 + 0.524071i
\(267\) −880.650 + 1525.33i −0.201854 + 0.349621i
\(268\) −639.091 −0.145667
\(269\) 1334.13 2310.79i 0.302393 0.523760i −0.674285 0.738471i \(-0.735548\pi\)
0.976677 + 0.214712i \(0.0688813\pi\)
\(270\) 1191.47 + 2063.68i 0.268557 + 0.465155i
\(271\) −2850.64 4937.45i −0.638982 1.10675i −0.985657 0.168763i \(-0.946023\pi\)
0.346675 0.937985i \(-0.387311\pi\)
\(272\) −4.88331 −0.00108858
\(273\) 3365.31 + 1955.50i 0.746073 + 0.433524i
\(274\) −2837.35 −0.625587
\(275\) 2308.56 + 3998.54i 0.506223 + 0.876804i
\(276\) −248.532 430.471i −0.0542025 0.0938815i
\(277\) 3576.24 6194.24i 0.775725 1.34359i −0.158662 0.987333i \(-0.550718\pi\)
0.934386 0.356261i \(-0.115949\pi\)
\(278\) −1507.96 −0.325329
\(279\) −3296.54 + 5709.78i −0.707380 + 1.22522i
\(280\) 294.384 509.889i 0.0628316 0.108827i
\(281\) −6132.87 −1.30198 −0.650990 0.759086i \(-0.725646\pi\)
−0.650990 + 0.759086i \(0.725646\pi\)
\(282\) −5122.63 + 8872.66i −1.08173 + 1.87361i
\(283\) −1688.58 2924.70i −0.354683 0.614330i 0.632380 0.774658i \(-0.282078\pi\)
−0.987064 + 0.160328i \(0.948745\pi\)
\(284\) −1792.85 3105.31i −0.374599 0.648824i
\(285\) −1467.76 −0.305061
\(286\) 7311.53 4194.18i 1.51168 0.867157i
\(287\) 2966.29 0.610086
\(288\) −4515.49 7821.07i −0.923882 1.60021i
\(289\) 2454.47 + 4251.27i 0.499587 + 0.865310i
\(290\) 900.982 1560.55i 0.182440 0.315995i
\(291\) −10199.0 −2.05455
\(292\) −2995.30 + 5188.01i −0.600297 + 1.03974i
\(293\) 2352.38 4074.45i 0.469037 0.812395i −0.530337 0.847787i \(-0.677935\pi\)
0.999374 + 0.0353917i \(0.0112679\pi\)
\(294\) 9966.34 1.97704
\(295\) 727.050 1259.29i 0.143493 0.248537i
\(296\) −2036.37 3527.10i −0.399871 0.692596i
\(297\) −3667.43 6352.18i −0.716518 1.24105i
\(298\) 8258.86 1.60545
\(299\) 0.583991 209.460i 0.000112953 0.0405129i
\(300\) −13027.0 −2.50704
\(301\) −2043.64 3539.69i −0.391341 0.677822i
\(302\) −965.312 1671.97i −0.183932 0.318580i
\(303\) −4215.09 + 7300.74i −0.799176 + 1.38421i
\(304\) 145.863 0.0275192
\(305\) 226.461 392.242i 0.0425151 0.0736384i
\(306\) 222.559 385.484i 0.0415780 0.0720152i
\(307\) 5130.49 0.953787 0.476894 0.878961i \(-0.341763\pi\)
0.476894 + 0.878961i \(0.341763\pi\)
\(308\) −2413.93 + 4181.05i −0.446579 + 0.773498i
\(309\) 8249.11 + 14287.9i 1.51869 + 2.63045i
\(310\) 871.922 + 1510.21i 0.159748 + 0.276692i
\(311\) 7948.94 1.44933 0.724667 0.689099i \(-0.241994\pi\)
0.724667 + 0.689099i \(0.241994\pi\)
\(312\) −24.8902 + 8927.34i −0.00451644 + 1.61991i
\(313\) −8521.87 −1.53893 −0.769465 0.638689i \(-0.779477\pi\)
−0.769465 + 0.638689i \(0.779477\pi\)
\(314\) 3015.57 + 5223.12i 0.541969 + 0.938718i
\(315\) −650.000 1125.83i −0.116265 0.201376i
\(316\) −240.388 + 416.365i −0.0427940 + 0.0741213i
\(317\) −6662.46 −1.18044 −0.590222 0.807241i \(-0.700960\pi\)
−0.590222 + 0.807241i \(0.700960\pi\)
\(318\) 12135.3 21019.0i 2.13999 3.70657i
\(319\) −2773.29 + 4803.49i −0.486754 + 0.843083i
\(320\) −2334.23 −0.407773
\(321\) 8278.62 14339.0i 1.43946 2.49322i
\(322\) 97.4536 + 168.795i 0.0168661 + 0.0292129i
\(323\) 60.6483 + 105.046i 0.0104476 + 0.0180957i
\(324\) 3949.74 0.677253
\(325\) −4746.38 2758.00i −0.810097 0.470726i
\(326\) 16450.8 2.79486
\(327\) 3890.74 + 6738.96i 0.657977 + 1.13965i
\(328\) 3401.82 + 5892.12i 0.572665 + 0.991884i
\(329\) 1236.39 2141.49i 0.207187 0.358858i
\(330\) −4385.09 −0.731489
\(331\) 1955.89 3387.69i 0.324789 0.562551i −0.656681 0.754169i \(-0.728040\pi\)
0.981470 + 0.191618i \(0.0613733\pi\)
\(332\) 487.689 844.703i 0.0806188 0.139636i
\(333\) −8992.61 −1.47986
\(334\) −7789.84 + 13492.4i −1.27617 + 2.21039i
\(335\) 70.0519 + 121.333i 0.0114249 + 0.0197885i
\(336\) 100.614 + 174.268i 0.0163361 + 0.0282949i
\(337\) −627.211 −0.101384 −0.0506919 0.998714i \(-0.516143\pi\)
−0.0506919 + 0.998714i \(0.516143\pi\)
\(338\) −5059.18 + 8651.00i −0.814152 + 1.39217i
\(339\) −2908.34 −0.465957
\(340\) −36.2337 62.7586i −0.00577955 0.0100105i
\(341\) −2683.84 4648.56i −0.426212 0.738221i
\(342\) −6647.79 + 11514.3i −1.05109 + 1.82053i
\(343\) −5685.08 −0.894943
\(344\) 4687.40 8118.82i 0.734674 1.27249i
\(345\) −54.4841 + 94.3693i −0.00850240 + 0.0147266i
\(346\) −10684.2 −1.66007
\(347\) 1911.51 3310.83i 0.295721 0.512204i −0.679431 0.733739i \(-0.737773\pi\)
0.975152 + 0.221535i \(0.0711068\pi\)
\(348\) −7824.72 13552.8i −1.20531 2.08767i
\(349\) −1705.33 2953.72i −0.261560 0.453035i 0.705097 0.709111i \(-0.250904\pi\)
−0.966657 + 0.256076i \(0.917570\pi\)
\(350\) 5108.10 0.780112
\(351\) 7540.21 + 4381.42i 1.14663 + 0.666275i
\(352\) 7352.48 1.11332
\(353\) 2793.82 + 4839.03i 0.421246 + 0.729620i 0.996062 0.0886632i \(-0.0282595\pi\)
−0.574815 + 0.818283i \(0.694926\pi\)
\(354\) −10258.2 17767.6i −1.54015 2.66763i
\(355\) −393.035 + 680.757i −0.0587609 + 0.101777i
\(356\) 2597.49 0.386704
\(357\) −83.6680 + 144.917i −0.0124039 + 0.0214841i
\(358\) −1521.03 + 2634.50i −0.224550 + 0.388932i
\(359\) 2230.14 0.327861 0.163931 0.986472i \(-0.447583\pi\)
0.163931 + 0.986472i \(0.447583\pi\)
\(360\) 1490.87 2582.27i 0.218266 0.378049i
\(361\) 1617.95 + 2802.37i 0.235887 + 0.408568i
\(362\) −1598.91 2769.39i −0.232146 0.402088i
\(363\) 1938.38 0.280272
\(364\) 16.0037 5740.04i 0.00230446 0.826538i
\(365\) 1313.28 0.188330
\(366\) −3195.20 5534.25i −0.456327 0.790382i
\(367\) 4349.57 + 7533.68i 0.618653 + 1.07154i 0.989732 + 0.142938i \(0.0456548\pi\)
−0.371078 + 0.928602i \(0.621012\pi\)
\(368\) 5.41455 9.37828i 0.000766992 0.00132847i
\(369\) 15022.4 2.11934
\(370\) −1189.25 + 2059.85i −0.167098 + 0.289423i
\(371\) −2928.97 + 5073.13i −0.409878 + 0.709929i
\(372\) 15144.7 2.11080
\(373\) −5482.09 + 9495.26i −0.760997 + 1.31809i 0.181340 + 0.983420i \(0.441956\pi\)
−0.942337 + 0.334665i \(0.891377\pi\)
\(374\) 181.194 + 313.837i 0.0250517 + 0.0433908i
\(375\) 2951.94 + 5112.91i 0.406500 + 0.704079i
\(376\) 5671.70 0.777914
\(377\) 18.3862 6594.57i 0.00251177 0.900895i
\(378\) −8114.84 −1.10419
\(379\) −6955.06 12046.5i −0.942631 1.63269i −0.760426 0.649425i \(-0.775010\pi\)
−0.182206 0.983260i \(-0.558324\pi\)
\(380\) 1082.29 + 1874.58i 0.146106 + 0.253064i
\(381\) −2696.12 + 4669.82i −0.362537 + 0.627932i
\(382\) −5934.03 −0.794794
\(383\) 247.377 428.469i 0.0330035 0.0571638i −0.849052 0.528310i \(-0.822826\pi\)
0.882055 + 0.471146i \(0.156159\pi\)
\(384\) −9988.35 + 17300.3i −1.32738 + 2.29910i
\(385\) 1058.38 0.140104
\(386\) −1184.48 + 2051.59i −0.156188 + 0.270526i
\(387\) −10349.8 17926.3i −1.35945 2.35464i
\(388\) 7520.52 + 13025.9i 0.984011 + 1.70436i
\(389\) −4140.47 −0.539666 −0.269833 0.962907i \(-0.586968\pi\)
−0.269833 + 0.962907i \(0.586968\pi\)
\(390\) 4522.40 2594.22i 0.587181 0.336830i
\(391\) 9.00524 0.00116474
\(392\) −2758.65 4778.12i −0.355441 0.615641i
\(393\) 5782.70 + 10015.9i 0.742236 + 1.28559i
\(394\) 7118.41 12329.5i 0.910204 1.57652i
\(395\) 105.398 0.0134256
\(396\) −12225.0 + 21174.4i −1.55134 + 2.68700i
\(397\) 940.896 1629.68i 0.118948 0.206023i −0.800403 0.599462i \(-0.795381\pi\)
0.919351 + 0.393439i \(0.128715\pi\)
\(398\) −5642.90 −0.710686
\(399\) 2499.15 4328.65i 0.313568 0.543116i
\(400\) −141.904 245.784i −0.0177380 0.0307231i
\(401\) −210.883 365.259i −0.0262618 0.0454867i 0.852596 0.522571i \(-0.175027\pi\)
−0.878858 + 0.477084i \(0.841694\pi\)
\(402\) 1976.76 0.245254
\(403\) 5517.96 + 3206.34i 0.682058 + 0.396326i
\(404\) 12432.5 1.53103
\(405\) −432.938 749.871i −0.0531182 0.0920034i
\(406\) 3068.20 + 5314.28i 0.375055 + 0.649615i
\(407\) 3660.62 6340.37i 0.445823 0.772188i
\(408\) −383.811 −0.0465722
\(409\) −1275.11 + 2208.55i −0.154157 + 0.267007i −0.932752 0.360520i \(-0.882599\pi\)
0.778595 + 0.627527i \(0.215933\pi\)
\(410\) 1986.68 3441.04i 0.239306 0.414489i
\(411\) 5401.99 0.648322
\(412\) 12165.4 21071.2i 1.45473 2.51966i
\(413\) 2475.89 + 4288.37i 0.294990 + 0.510937i
\(414\) 493.542 + 854.839i 0.0585900 + 0.101481i
\(415\) −213.826 −0.0252923
\(416\) −7582.69 + 4349.73i −0.893683 + 0.512651i
\(417\) 2870.98 0.337152
\(418\) −5412.23 9374.25i −0.633303 1.09691i
\(419\) −6192.41 10725.6i −0.722002 1.25054i −0.960196 0.279327i \(-0.909889\pi\)
0.238194 0.971218i \(-0.423445\pi\)
\(420\) −1493.09 + 2586.10i −0.173465 + 0.300450i
\(421\) 10463.0 1.21124 0.605622 0.795752i \(-0.292924\pi\)
0.605622 + 0.795752i \(0.292924\pi\)
\(422\) −5774.17 + 10001.2i −0.666071 + 1.15367i
\(423\) 6261.55 10845.3i 0.719733 1.24661i
\(424\) −13436.1 −1.53895
\(425\) 118.004 204.389i 0.0134683 0.0233278i
\(426\) 5545.44 + 9604.99i 0.630698 + 1.09240i
\(427\) 771.190 + 1335.74i 0.0874016 + 0.151384i
\(428\) −24417.9 −2.75767
\(429\) −13920.3 + 7985.22i −1.56661 + 0.898671i
\(430\) −5474.94 −0.614012
\(431\) 1981.19 + 3431.53i 0.221417 + 0.383506i 0.955238 0.295837i \(-0.0955985\pi\)
−0.733821 + 0.679342i \(0.762265\pi\)
\(432\) 225.432 + 390.459i 0.0251067 + 0.0434860i
\(433\) 4197.07 7269.54i 0.465816 0.806817i −0.533422 0.845849i \(-0.679094\pi\)
0.999238 + 0.0390321i \(0.0124275\pi\)
\(434\) −5938.48 −0.656812
\(435\) −1715.36 + 2971.10i −0.189070 + 0.327479i
\(436\) 5737.90 9938.34i 0.630265 1.09165i
\(437\) −268.984 −0.0294446
\(438\) 9264.72 16047.0i 1.01070 1.75058i
\(439\) −5087.26 8811.39i −0.553079 0.957960i −0.998050 0.0624156i \(-0.980120\pi\)
0.444972 0.895545i \(-0.353214\pi\)
\(440\) 1213.78 + 2102.33i 0.131510 + 0.227783i
\(441\) −12182.2 −1.31543
\(442\) −372.534 216.470i −0.0400896 0.0232950i
\(443\) −5880.74 −0.630705 −0.315353 0.948975i \(-0.602123\pi\)
−0.315353 + 0.948975i \(0.602123\pi\)
\(444\) 10328.3 + 17889.1i 1.10396 + 1.91211i
\(445\) −284.716 493.142i −0.0303299 0.0525330i
\(446\) −2726.74 + 4722.85i −0.289495 + 0.501420i
\(447\) −15723.9 −1.66379
\(448\) 3974.49 6884.01i 0.419145 0.725980i
\(449\) −5332.43 + 9236.05i −0.560475 + 0.970771i 0.436980 + 0.899471i \(0.356048\pi\)
−0.997455 + 0.0712996i \(0.977285\pi\)
\(450\) 25869.3 2.70998
\(451\) −6115.16 + 10591.8i −0.638474 + 1.10587i
\(452\) 2144.55 + 3714.47i 0.223166 + 0.386535i
\(453\) 1837.84 + 3183.23i 0.190617 + 0.330158i
\(454\) 3964.87 0.409869
\(455\) −1091.52 + 626.138i −0.112464 + 0.0645138i
\(456\) 11464.3 1.17734
\(457\) 7414.43 + 12842.2i 0.758933 + 1.31451i 0.943395 + 0.331671i \(0.107612\pi\)
−0.184462 + 0.982840i \(0.559054\pi\)
\(458\) 10684.6 + 18506.3i 1.09009 + 1.88808i
\(459\) −187.464 + 324.697i −0.0190633 + 0.0330186i
\(460\) 160.702 0.0162886
\(461\) 4855.85 8410.58i 0.490585 0.849717i −0.509357 0.860555i \(-0.670117\pi\)
0.999941 + 0.0108381i \(0.00344995\pi\)
\(462\) 7466.49 12932.3i 0.751889 1.30231i
\(463\) 11353.5 1.13962 0.569809 0.821777i \(-0.307017\pi\)
0.569809 + 0.821777i \(0.307017\pi\)
\(464\) 170.470 295.263i 0.0170558 0.0295415i
\(465\) −1660.04 2875.27i −0.165554 0.286747i
\(466\) −11105.1 19234.6i −1.10393 1.91207i
\(467\) 6451.31 0.639252 0.319626 0.947544i \(-0.396443\pi\)
0.319626 + 0.947544i \(0.396443\pi\)
\(468\) 81.0489 29069.7i 0.00800531 2.87126i
\(469\) −477.109 −0.0469741
\(470\) −1656.16 2868.55i −0.162538 0.281524i
\(471\) −5741.29 9944.20i −0.561666 0.972833i
\(472\) −5678.84 + 9836.04i −0.553792 + 0.959196i
\(473\) 16852.3 1.63820
\(474\) 743.542 1287.85i 0.0720506 0.124795i
\(475\) −3524.75 + 6105.05i −0.340477 + 0.589724i
\(476\) 246.780 0.0237629
\(477\) −14833.4 + 25692.2i −1.42385 + 2.46618i
\(478\) 10964.9 + 18991.8i 1.04921 + 1.81729i
\(479\) 4783.23 + 8284.79i 0.456266 + 0.790275i 0.998760 0.0497842i \(-0.0158533\pi\)
−0.542494 + 0.840059i \(0.682520\pi\)
\(480\) 4547.73 0.432447
\(481\) −24.2689 + 8704.52i −0.00230056 + 0.825139i
\(482\) −26803.5 −2.53292
\(483\) −185.540 321.365i −0.0174790 0.0302746i
\(484\) −1429.32 2475.66i −0.134234 0.232500i
\(485\) 1648.67 2855.59i 0.154356 0.267352i
\(486\) 10697.9 0.998489
\(487\) −2458.56 + 4258.35i −0.228764 + 0.396230i −0.957442 0.288626i \(-0.906802\pi\)
0.728678 + 0.684856i \(0.240135\pi\)
\(488\) −1768.84 + 3063.72i −0.164081 + 0.284197i
\(489\) −31320.3 −2.89643
\(490\) −1611.07 + 2790.45i −0.148532 + 0.257265i
\(491\) −1475.41 2555.49i −0.135610 0.234883i 0.790220 0.612823i \(-0.209966\pi\)
−0.925830 + 0.377940i \(0.876633\pi\)
\(492\) −17253.7 29884.2i −1.58101 2.73838i
\(493\) 283.519 0.0259007
\(494\) 11127.5 + 6465.90i 1.01346 + 0.588896i
\(495\) 5360.04 0.486699
\(496\) 164.972 + 285.740i 0.0149344 + 0.0258671i
\(497\) −1338.44 2318.25i −0.120799 0.209231i
\(498\) −1508.47 + 2612.74i −0.135735 + 0.235100i
\(499\) 13430.1 1.20484 0.602418 0.798180i \(-0.294204\pi\)
0.602418 + 0.798180i \(0.294204\pi\)
\(500\) 4353.40 7540.30i 0.389380 0.674425i
\(501\) 14830.9 25687.9i 1.32255 2.29072i
\(502\) −26485.6 −2.35480
\(503\) −660.143 + 1143.40i −0.0585175 + 0.101355i −0.893800 0.448466i \(-0.851971\pi\)
0.835283 + 0.549821i \(0.185304\pi\)
\(504\) 5077.02 + 8793.65i 0.448707 + 0.777183i
\(505\) −1362.74 2360.34i −0.120082 0.207988i
\(506\) −803.623 −0.0706036
\(507\) 9632.09 16470.5i 0.843740 1.44276i
\(508\) 7952.25 0.694536
\(509\) −10458.2 18114.2i −0.910713 1.57740i −0.813060 0.582180i \(-0.802200\pi\)
−0.0976524 0.995221i \(-0.531133\pi\)
\(510\) 112.074 + 194.118i 0.00973082 + 0.0168543i
\(511\) −2236.12 + 3873.08i −0.193582 + 0.335293i
\(512\) −877.105 −0.0757089
\(513\) 5599.50 9698.62i 0.481918 0.834707i
\(514\) −2727.49 + 4724.15i −0.234055 + 0.405396i
\(515\) −5333.90 −0.456388
\(516\) −23774.0 + 41177.8i −2.02828 + 3.51308i
\(517\) 5097.77 + 8829.60i 0.433655 + 0.751113i
\(518\) −4049.88 7014.60i −0.343517 0.594988i
\(519\) 20341.4 1.72040
\(520\) −2495.52 1450.08i −0.210453 0.122289i
\(521\) −10104.2 −0.849661 −0.424831 0.905273i \(-0.639666\pi\)
−0.424831 + 0.905273i \(0.639666\pi\)
\(522\) 15538.5 + 26913.5i 1.30288 + 2.25665i
\(523\) −3565.61 6175.82i −0.298113 0.516347i 0.677591 0.735439i \(-0.263024\pi\)
−0.975704 + 0.219092i \(0.929691\pi\)
\(524\) 8528.08 14771.1i 0.710975 1.23144i
\(525\) −9725.21 −0.808463
\(526\) 534.122 925.127i 0.0442753 0.0766871i
\(527\) −137.187 + 237.615i −0.0113396 + 0.0196407i
\(528\) −829.682 −0.0683849
\(529\) 6073.52 10519.6i 0.499179 0.864604i
\(530\) 3923.38 + 6795.49i 0.321548 + 0.556938i
\(531\) 12538.9 + 21717.9i 1.02475 + 1.77491i
\(532\) −7371.27 −0.600724
\(533\) 40.5420 14541.1i 0.00329469 1.18170i
\(534\) −8034.26 −0.651080
\(535\) 2676.49 + 4635.82i 0.216289 + 0.374624i
\(536\) −547.161 947.710i −0.0440928 0.0763710i
\(537\) 2895.86 5015.78i 0.232711 0.403067i
\(538\) 12171.5 0.975369
\(539\) 4958.99 8589.22i 0.396287 0.686390i
\(540\) −3345.36 + 5794.33i −0.266595 + 0.461756i
\(541\) 16831.7 1.33762 0.668809 0.743435i \(-0.266805\pi\)
0.668809 + 0.743435i \(0.266805\pi\)
\(542\) 13003.3 22522.5i 1.03052 1.78491i
\(543\) 3044.13 + 5272.59i 0.240582 + 0.416701i
\(544\) −187.914 325.477i −0.0148102 0.0256520i
\(545\) −2515.77 −0.197731
\(546\) −49.5009 + 17754.4i −0.00387993 + 1.39161i
\(547\) −9560.55 −0.747312 −0.373656 0.927567i \(-0.621896\pi\)
−0.373656 + 0.927567i \(0.621896\pi\)
\(548\) −3983.31 6899.30i −0.310508 0.537816i
\(549\) 3905.59 + 6764.69i 0.303619 + 0.525883i
\(550\) −10530.6 + 18239.6i −0.816412 + 1.41407i
\(551\) −8468.64 −0.654766
\(552\) 425.564 737.099i 0.0328138 0.0568352i
\(553\) −179.460 + 310.834i −0.0138000 + 0.0239024i
\(554\) 32626.5 2.50210
\(555\) 2264.20 3921.71i 0.173171 0.299941i
\(556\) −2117.00 3666.75i −0.161476 0.279685i
\(557\) 11414.0 + 19769.5i 0.868267 + 1.50388i 0.863766 + 0.503893i \(0.168099\pi\)
0.00450060 + 0.999990i \(0.498567\pi\)
\(558\) −30074.7 −2.28166
\(559\) −17380.0 + 9969.82i −1.31502 + 0.754344i
\(560\) −65.0571 −0.00490922
\(561\) −344.972 597.509i −0.0259621 0.0449677i
\(562\) −13987.7 24227.4i −1.04989 1.81846i
\(563\) −10814.9 + 18731.9i −0.809578 + 1.40223i 0.103579 + 0.994621i \(0.466971\pi\)
−0.913157 + 0.407609i \(0.866363\pi\)
\(564\) −28766.3 −2.14766
\(565\) 470.136 814.299i 0.0350066 0.0606333i
\(566\) 7702.53 13341.2i 0.572016 0.990761i
\(567\) 2948.65 0.218398
\(568\) 3069.92 5317.25i 0.226780 0.392794i
\(569\) 5294.93 + 9171.09i 0.390114 + 0.675698i 0.992464 0.122534i \(-0.0391022\pi\)
−0.602350 + 0.798232i \(0.705769\pi\)
\(570\) −3347.62 5798.25i −0.245994 0.426074i
\(571\) −1757.27 −0.128791 −0.0643954 0.997924i \(-0.520512\pi\)
−0.0643954 + 0.997924i \(0.520512\pi\)
\(572\) 20463.1 + 11890.5i 1.49581 + 0.869176i
\(573\) 11297.7 0.823679
\(574\) 6765.45 + 11718.1i 0.491959 + 0.852097i
\(575\) 261.683 + 453.247i 0.0189790 + 0.0328726i
\(576\) 20128.3 34863.2i 1.45604 2.52193i
\(577\) −13580.6 −0.979840 −0.489920 0.871767i \(-0.662974\pi\)
−0.489920 + 0.871767i \(0.662974\pi\)
\(578\) −11196.2 + 19392.4i −0.805710 + 1.39553i
\(579\) 2255.12 3905.98i 0.161864 0.280357i
\(580\) 5059.49 0.362214
\(581\) 364.081 630.607i 0.0259977 0.0450293i
\(582\) −23261.6 40290.3i −1.65674 2.86956i
\(583\) −12076.5 20917.0i −0.857900 1.48593i
\(584\) −10257.8 −0.726831
\(585\) −5527.86 + 3171.00i −0.390682 + 0.224110i
\(586\) 21461.0 1.51288
\(587\) 478.663 + 829.068i 0.0336568 + 0.0582952i 0.882363 0.470569i \(-0.155951\pi\)
−0.848706 + 0.528864i \(0.822618\pi\)
\(588\) 13991.6 + 24234.1i 0.981297 + 1.69966i
\(589\) 4097.75 7097.50i 0.286663 0.496515i
\(590\) 6632.95 0.462838
\(591\) −13552.6 + 23473.8i −0.943283 + 1.63381i
\(592\) −225.013 + 389.734i −0.0156216 + 0.0270573i
\(593\) 6729.49 0.466015 0.233007 0.972475i \(-0.425143\pi\)
0.233007 + 0.972475i \(0.425143\pi\)
\(594\) 16729.2 28975.8i 1.15557 2.00150i
\(595\) −27.0500 46.8520i −0.00186377 0.00322814i
\(596\) 11594.5 + 20082.2i 0.796859 + 1.38020i
\(597\) 10743.4 0.736514
\(598\) 828.785 475.423i 0.0566748 0.0325109i
\(599\) 2281.52 0.155626 0.0778132 0.996968i \(-0.475206\pi\)
0.0778132 + 0.996968i \(0.475206\pi\)
\(600\) −11153.1 19317.8i −0.758874 1.31441i
\(601\) −3200.71 5543.79i −0.217237 0.376266i 0.736725 0.676192i \(-0.236371\pi\)
−0.953962 + 0.299926i \(0.903038\pi\)
\(602\) 9322.18 16146.5i 0.631136 1.09316i
\(603\) −2416.26 −0.163180
\(604\) 2710.37 4694.50i 0.182588 0.316252i
\(605\) −313.341 + 542.722i −0.0210564 + 0.0364707i
\(606\) −38454.7 −2.57775
\(607\) −1389.62 + 2406.89i −0.0929207 + 0.160943i −0.908739 0.417365i \(-0.862954\pi\)
0.815818 + 0.578308i \(0.196287\pi\)
\(608\) 5612.95 + 9721.92i 0.374400 + 0.648480i
\(609\) −5841.50 10117.8i −0.388685 0.673223i
\(610\) 2066.03 0.137133
\(611\) −10481.0 6090.22i −0.693969 0.403247i
\(612\) 1249.79 0.0825485
\(613\) −11310.4 19590.2i −0.745226 1.29077i −0.950089 0.311979i \(-0.899008\pi\)
0.204863 0.978791i \(-0.434325\pi\)
\(614\) 11701.5 + 20267.6i 0.769111 + 1.33214i
\(615\) −3782.41 + 6551.33i −0.248002 + 0.429553i
\(616\) −8266.80 −0.540712
\(617\) −10987.0 + 19030.1i −0.716889 + 1.24169i 0.245337 + 0.969438i \(0.421101\pi\)
−0.962226 + 0.272250i \(0.912232\pi\)
\(618\) −37628.7 + 65174.9i −2.44927 + 4.24226i
\(619\) 7145.19 0.463957 0.231979 0.972721i \(-0.425480\pi\)
0.231979 + 0.972721i \(0.425480\pi\)
\(620\) −2448.15 + 4240.32i −0.158581 + 0.274670i
\(621\) −415.715 720.040i −0.0268632 0.0465285i
\(622\) 18129.8 + 31401.7i 1.16871 + 2.02426i
\(623\) 1939.14 0.124703
\(624\) 855.660 490.840i 0.0548939 0.0314893i
\(625\) 12730.8 0.814773
\(626\) −19436.5 33665.0i −1.24096 2.14940i
\(627\) 10304.2 + 17847.5i 0.656319 + 1.13678i
\(628\) −8467.00 + 14665.3i −0.538010 + 0.931861i
\(629\) −374.231 −0.0237227
\(630\) 2965.01 5135.55i 0.187506 0.324770i
\(631\) 9441.62 16353.4i 0.595666 1.03172i −0.397787 0.917478i \(-0.630222\pi\)
0.993453 0.114245i \(-0.0364450\pi\)
\(632\) −823.239 −0.0518144
\(633\) 10993.3 19041.0i 0.690278 1.19560i
\(634\) −15195.6 26319.5i −0.951882 1.64871i
\(635\) −871.661 1509.76i −0.0544737 0.0943512i
\(636\) 68146.4 4.24871
\(637\) −32.8768 + 11791.9i −0.00204494 + 0.733457i
\(638\) −25301.1 −1.57003
\(639\) −6778.37 11740.5i −0.419637 0.726833i
\(640\) −3229.25 5593.22i −0.199449 0.345456i
\(641\) 1815.54 3144.61i 0.111871 0.193767i −0.804653 0.593745i \(-0.797649\pi\)
0.916525 + 0.399978i \(0.130982\pi\)
\(642\) 75526.7 4.64299
\(643\) 5385.98 9328.78i 0.330330 0.572148i −0.652247 0.758007i \(-0.726173\pi\)
0.982576 + 0.185859i \(0.0595067\pi\)
\(644\) −273.627 + 473.935i −0.0167429 + 0.0289995i
\(645\) 10423.6 0.636327
\(646\) −276.651 + 479.173i −0.0168493 + 0.0291839i
\(647\) −7574.14 13118.8i −0.460232 0.797146i 0.538740 0.842472i \(-0.318901\pi\)
−0.998972 + 0.0453265i \(0.985567\pi\)
\(648\) 3381.59 + 5857.09i 0.205002 + 0.355074i
\(649\) −20416.7 −1.23487
\(650\) 69.8152 25040.6i 0.00421289 1.51103i
\(651\) 11306.2 0.680682
\(652\) 23094.9 + 40001.6i 1.38722 + 2.40273i
\(653\) −3679.45 6372.99i −0.220502 0.381921i 0.734458 0.678654i \(-0.237436\pi\)
−0.954961 + 0.296733i \(0.904103\pi\)
\(654\) −17747.8 + 30740.1i −1.06115 + 1.83797i
\(655\) −3739.11 −0.223052
\(656\) 375.890 651.061i 0.0223720 0.0387495i
\(657\) −11324.6 + 19614.7i −0.672471 + 1.16475i
\(658\) 11279.7 0.668282
\(659\) −14166.6 + 24537.3i −0.837411 + 1.45044i 0.0546414 + 0.998506i \(0.482598\pi\)
−0.892052 + 0.451932i \(0.850735\pi\)
\(660\) −6156.16 10662.8i −0.363073 0.628860i
\(661\) −554.842 961.014i −0.0326488 0.0565493i 0.849239 0.528008i \(-0.177061\pi\)
−0.881888 + 0.471459i \(0.843728\pi\)
\(662\) 17843.8 1.04761
\(663\) 709.260 + 412.132i 0.0415466 + 0.0241416i
\(664\) 1670.15 0.0976121
\(665\) 807.978 + 1399.46i 0.0471159 + 0.0816071i
\(666\) −20510.1 35524.6i −1.19332 2.06689i
\(667\) −314.362 + 544.491i −0.0182491 + 0.0316083i
\(668\) −43744.1 −2.53369
\(669\) 5191.39 8991.75i 0.300016 0.519643i
\(670\) −319.545 + 553.469i −0.0184255 + 0.0319140i
\(671\) −6359.39 −0.365874
\(672\) −7743.41 + 13412.0i −0.444507 + 0.769908i
\(673\) −10489.5 18168.4i −0.600806 1.04063i −0.992699 0.120616i \(-0.961513\pi\)
0.391893 0.920011i \(-0.371820\pi\)
\(674\) −1430.53 2477.75i −0.0817535 0.141601i
\(675\) −21790.0 −1.24251
\(676\) −28138.2 156.905i −1.60095 0.00892722i
\(677\) 30941.9 1.75656 0.878282 0.478142i \(-0.158690\pi\)
0.878282 + 0.478142i \(0.158690\pi\)
\(678\) −6633.27 11489.2i −0.375736 0.650795i
\(679\) 5614.39 + 9724.41i 0.317320 + 0.549615i
\(680\) 62.0433 107.462i 0.00349890 0.00606027i
\(681\) −7548.64 −0.424764
\(682\) 12242.5 21204.6i 0.687375 1.19057i
\(683\) −2713.11 + 4699.24i −0.151997 + 0.263267i −0.931962 0.362557i \(-0.881904\pi\)
0.779964 + 0.625824i \(0.215237\pi\)
\(684\) −37330.9 −2.08682
\(685\) −873.236 + 1512.49i −0.0487075 + 0.0843638i
\(686\) −12966.4 22458.4i −0.721660 1.24995i
\(687\) −20342.2 35233.8i −1.12970 1.95670i
\(688\) −1035.89 −0.0574023
\(689\) 24829.1 + 14427.5i 1.37288 + 0.797744i
\(690\) −497.065 −0.0274245
\(691\) 16896.3 + 29265.3i 0.930199 + 1.61115i 0.782979 + 0.622048i \(0.213699\pi\)
0.147219 + 0.989104i \(0.452968\pi\)
\(692\) −14999.3 25979.6i −0.823973 1.42716i
\(693\) −9126.53 + 15807.6i −0.500272 + 0.866496i
\(694\) 17438.9 0.953849
\(695\) −464.096 + 803.838i −0.0253297 + 0.0438724i
\(696\) 13398.4 23206.6i 0.729689 1.26386i
\(697\) 625.164 0.0339738
\(698\) 7778.97 13473.6i 0.421831 0.730633i
\(699\) 21142.8 + 36620.3i 1.14405 + 1.98156i
\(700\) 7171.16 + 12420.8i 0.387206 + 0.670661i
\(701\) 6905.96 0.372089 0.186045 0.982541i \(-0.440433\pi\)
0.186045 + 0.982541i \(0.440433\pi\)
\(702\) −110.910 + 39780.0i −0.00596301 + 2.13875i
\(703\) 11178.2 0.599707
\(704\) 16387.2 + 28383.5i 0.877297 + 1.51952i
\(705\) 3153.12 + 5461.37i 0.168445 + 0.291755i
\(706\) −12744.1 + 22073.5i −0.679366 + 1.17670i
\(707\) 9281.37 0.493723
\(708\) 28802.5 49887.3i 1.52890 2.64814i
\(709\) 1003.56 1738.22i 0.0531589 0.0920739i −0.838221 0.545330i \(-0.816404\pi\)
0.891380 + 0.453256i \(0.149738\pi\)
\(710\) −3585.70 −0.189534
\(711\) −908.854 + 1574.18i −0.0479391 + 0.0830329i
\(712\) 2223.85 + 3851.83i 0.117054 + 0.202744i
\(713\) −304.222 526.929i −0.0159793 0.0276769i
\(714\) −763.312 −0.0400088
\(715\) 14.4655 5188.32i 0.000756613 0.271374i
\(716\) −8541.38 −0.445819
\(717\) −20875.9 36158.1i −1.08734 1.88333i
\(718\) 5086.44 + 8809.98i 0.264379 + 0.457918i
\(719\) 6393.72 11074.3i 0.331635 0.574409i −0.651198 0.758908i \(-0.725733\pi\)
0.982833 + 0.184499i \(0.0590664\pi\)
\(720\) −329.474 −0.0170538
\(721\) 9082.03 15730.5i 0.469116 0.812532i
\(722\) −7380.35 + 12783.1i −0.380427 + 0.658919i
\(723\) 51030.7 2.62497
\(724\) 4489.36 7775.80i 0.230450 0.399151i
\(725\) 8238.74 + 14269.9i 0.422040 + 0.730995i
\(726\) 4421.01 + 7657.42i 0.226004 + 0.391451i
\(727\) −6090.70 −0.310717 −0.155359 0.987858i \(-0.549653\pi\)
−0.155359 + 0.987858i \(0.549653\pi\)
\(728\) 8525.64 4890.64i 0.434040 0.248982i
\(729\) −28693.9 −1.45780
\(730\) 2995.30 + 5188.01i 0.151864 + 0.263037i
\(731\) −430.710 746.011i −0.0217926 0.0377459i
\(732\) 8971.37 15538.9i 0.452994 0.784608i
\(733\) −38846.5 −1.95747 −0.978737 0.205117i \(-0.934243\pi\)
−0.978737 + 0.205117i \(0.934243\pi\)
\(734\) −19840.8 + 34365.3i −0.997735 + 1.72813i
\(735\) 3067.28 5312.69i 0.153930 0.266614i
\(736\) 833.427 0.0417399
\(737\) 983.585 1703.62i 0.0491599 0.0851474i
\(738\) 34262.8 + 59344.8i 1.70898 + 2.96005i
\(739\) −7228.77 12520.6i −0.359830 0.623245i 0.628102 0.778131i \(-0.283832\pi\)
−0.987932 + 0.154887i \(0.950499\pi\)
\(740\) −6678.29 −0.331755
\(741\) −21185.4 12310.3i −1.05029 0.610297i
\(742\) −26721.3 −1.32206
\(743\) 638.901 + 1106.61i 0.0315464 + 0.0546400i 0.881368 0.472431i \(-0.156623\pi\)
−0.849821 + 0.527071i \(0.823290\pi\)
\(744\) 12966.2 + 22458.1i 0.638931 + 1.10666i
\(745\) 2541.78 4402.49i 0.124998 0.216503i
\(746\) −50013.7 −2.45460
\(747\) 1843.84 3193.63i 0.0903116 0.156424i
\(748\) −508.750 + 881.181i −0.0248687 + 0.0430738i
\(749\) −18229.0 −0.889285
\(750\) −13465.4 + 23322.8i −0.655584 + 1.13551i
\(751\) 6503.93 + 11265.1i 0.316021 + 0.547364i 0.979654 0.200694i \(-0.0643197\pi\)
−0.663633 + 0.748058i \(0.730986\pi\)
\(752\) −313.353 542.743i −0.0151952 0.0263189i
\(753\) 50425.5 2.44038
\(754\) 26093.3 14968.1i 1.26029 0.722952i
\(755\) −1188.35 −0.0572829
\(756\) −11392.3 19732.0i −0.548060 0.949268i
\(757\) 5361.61 + 9286.57i 0.257425 + 0.445874i 0.965551 0.260212i \(-0.0837926\pi\)
−0.708126 + 0.706086i \(0.750459\pi\)
\(758\) 31725.9 54950.8i 1.52023 2.63312i
\(759\) 1530.00 0.0731694
\(760\) −1853.22 + 3209.87i −0.0884518 + 0.153203i
\(761\) −6810.90 + 11796.8i −0.324435 + 0.561938i −0.981398 0.191985i \(-0.938508\pi\)
0.656963 + 0.753923i \(0.271841\pi\)
\(762\) −24597.0 −1.16936
\(763\) 4283.59 7419.40i 0.203246 0.352032i
\(764\) −8330.68 14429.2i −0.394494 0.683284i
\(765\) −136.991 237.276i −0.00647443 0.0112140i
\(766\) 2256.84 0.106453
\(767\) 21056.0 12078.5i 0.991250 0.568619i
\(768\) −33365.0 −1.56765
\(769\) 4247.57 + 7357.01i 0.199183 + 0.344994i 0.948264 0.317484i \(-0.102838\pi\)
−0.749081 + 0.662478i \(0.769505\pi\)
\(770\) 2413.93 + 4181.05i 0.112977 + 0.195681i
\(771\) 5192.82 8994.22i 0.242561 0.420128i
\(772\) −6651.50 −0.310094
\(773\) −17131.3 + 29672.2i −0.797113 + 1.38064i 0.124375 + 0.992235i \(0.460307\pi\)
−0.921489 + 0.388405i \(0.873026\pi\)
\(774\) 47211.0 81771.9i 2.19246 3.79745i
\(775\) −15946.0 −0.739094
\(776\) −12877.5 + 22304.4i −0.595714 + 1.03181i
\(777\) 7710.50 + 13355.0i 0.356001 + 0.616612i
\(778\) −9443.48 16356.6i −0.435174 0.753743i
\(779\) −18673.5 −0.858854
\(780\) 12657.0 + 7354.65i