Properties

Label 13.4.c.b.3.1
Level 13
Weight 4
Character 13.3
Analytic conductor 0.767
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 13.c (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.767024830075\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3.1
Root \(-0.780776 + 1.35234i\)
Character \(\chi\) = 13.3
Dual form 13.4.c.b.9.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.219224 + 0.379706i) q^{2}\) \(+(1.84233 + 3.19101i) q^{3}\) \(+(3.90388 - 6.76172i) q^{4}\) \(-17.8078 q^{5}\) \(+(-0.807764 + 1.39909i) q^{6}\) \(+(-2.71922 + 4.70983i) q^{7}\) \(+6.93087 q^{8}\) \(+(6.71165 - 11.6249i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.219224 + 0.379706i) q^{2}\) \(+(1.84233 + 3.19101i) q^{3}\) \(+(3.90388 - 6.76172i) q^{4}\) \(-17.8078 q^{5}\) \(+(-0.807764 + 1.39909i) q^{6}\) \(+(-2.71922 + 4.70983i) q^{7}\) \(+6.93087 q^{8}\) \(+(6.71165 - 11.6249i) q^{9}\) \(+(-3.90388 - 6.76172i) q^{10}\) \(+(11.2116 + 19.4191i) q^{11}\) \(+28.7689 q^{12}\) \(+(21.9730 + 41.4027i) q^{13}\) \(-2.38447 q^{14}\) \(+(-32.8078 - 56.8247i) q^{15}\) \(+(-29.7116 - 51.4621i) q^{16}\) \(+(-33.9924 + 58.8766i) q^{17}\) \(+5.88540 q^{18}\) \(+(40.4039 - 69.9816i) q^{19}\) \(+(-69.5194 + 120.411i) q^{20}\) \(-20.0388 q^{21}\) \(+(-4.91571 + 8.51427i) q^{22}\) \(+(-70.2656 - 121.704i) q^{23}\) \(+(12.7689 + 22.1165i) q^{24}\) \(+192.116 q^{25}\) \(+(-10.9039 + 17.4198i) q^{26}\) \(+148.946 q^{27}\) \(+(21.2311 + 36.7733i) q^{28}\) \(+(53.3466 + 92.3990i) q^{29}\) \(+(14.3845 - 24.9146i) q^{30}\) \(-276.155 q^{31}\) \(+(40.7505 - 70.5819i) q^{32}\) \(+(-41.3111 + 71.5529i) q^{33}\) \(-29.8078 q^{34}\) \(+(48.4233 - 83.8716i) q^{35}\) \(+(-52.4029 - 90.7646i) q^{36}\) \(+(2.14584 + 3.71670i) q^{37}\) \(+35.4299 q^{38}\) \(+(-91.6349 + 146.394i) q^{39}\) \(-123.423 q^{40}\) \(+(-113.884 - 197.254i) q^{41}\) \(+(-4.39298 - 7.60887i) q^{42}\) \(+(-13.7647 + 23.8411i) q^{43}\) \(+175.076 q^{44}\) \(+(-119.519 + 207.014i) q^{45}\) \(+(30.8078 - 53.3606i) q^{46}\) \(+318.617 q^{47}\) \(+(109.477 - 189.620i) q^{48}\) \(+(156.712 + 271.433i) q^{49}\) \(+(42.1165 + 72.9479i) q^{50}\) \(-250.501 q^{51}\) \(+(365.734 + 13.0560i) q^{52}\) \(-67.6562 q^{53}\) \(+(32.6525 + 56.5558i) q^{54}\) \(+(-199.654 - 345.811i) q^{55}\) \(+(-18.8466 + 32.6432i) q^{56}\) \(+297.749 q^{57}\) \(+(-23.3897 + 40.5121i) q^{58}\) \(+(145.557 - 252.113i) q^{59}\) \(-512.311 q^{60}\) \(+(-331.655 + 574.444i) q^{61}\) \(+(-60.5398 - 104.858i) q^{62}\) \(+(36.5009 + 63.2215i) q^{63}\) \(-439.652 q^{64}\) \(+(-391.290 - 737.290i) q^{65}\) \(-36.2255 q^{66}\) \(+(212.551 + 368.149i) q^{67}\) \(+(265.405 + 459.695i) q^{68}\) \(+(258.905 - 448.436i) q^{69}\) \(+42.4621 q^{70}\) \(+(76.4815 - 132.470i) q^{71}\) \(+(46.5175 - 80.5708i) q^{72}\) \(+117.268 q^{73}\) \(+(-0.940837 + 1.62958i) q^{74}\) \(+(353.942 + 613.045i) q^{75}\) \(+(-315.464 - 546.400i) q^{76}\) \(-121.948 q^{77}\) \(+(-75.6751 - 2.70146i) q^{78}\) \(+202.462 q^{79}\) \(+(529.098 + 916.425i) q^{80}\) \(+(93.1932 + 161.415i) q^{81}\) \(+(49.9323 - 86.4853i) q^{82}\) \(+336.155 q^{83}\) \(+(-78.2292 + 135.497i) q^{84}\) \(+(605.329 - 1048.46i) q^{85}\) \(-12.0702 q^{86}\) \(+(-196.564 + 340.459i) q^{87}\) \(+(77.7065 + 134.592i) q^{88}\) \(+(-359.097 - 621.974i) q^{89}\) \(-104.806 q^{90}\) \(+(-254.750 - 9.09407i) q^{91}\) \(-1097.23 q^{92}\) \(+(-508.769 - 881.214i) q^{93}\) \(+(69.8485 + 120.981i) q^{94}\) \(+(-719.503 + 1246.22i) q^{95}\) \(+300.303 q^{96}\) \(+(-379.684 + 657.632i) q^{97}\) \(+(-68.7098 + 119.009i) q^{98}\) \(+300.994 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 38q^{6} \) \(\mathstrut -\mathstrut 15q^{7} \) \(\mathstrut -\mathstrut 30q^{8} \) \(\mathstrut -\mathstrut 35q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 38q^{6} \) \(\mathstrut -\mathstrut 15q^{7} \) \(\mathstrut -\mathstrut 30q^{8} \) \(\mathstrut -\mathstrut 35q^{9} \) \(\mathstrut +\mathstrut 5q^{10} \) \(\mathstrut -\mathstrut 17q^{11} \) \(\mathstrut +\mathstrut 280q^{12} \) \(\mathstrut +\mathstrut 125q^{13} \) \(\mathstrut -\mathstrut 92q^{14} \) \(\mathstrut -\mathstrut 90q^{15} \) \(\mathstrut -\mathstrut 57q^{16} \) \(\mathstrut -\mathstrut 70q^{17} \) \(\mathstrut -\mathstrut 430q^{18} \) \(\mathstrut +\mathstrut 141q^{19} \) \(\mathstrut -\mathstrut 175q^{20} \) \(\mathstrut +\mathstrut 126q^{21} \) \(\mathstrut +\mathstrut 170q^{22} \) \(\mathstrut -\mathstrut 145q^{23} \) \(\mathstrut +\mathstrut 216q^{24} \) \(\mathstrut +\mathstrut 150q^{25} \) \(\mathstrut -\mathstrut 23q^{26} \) \(\mathstrut +\mathstrut 670q^{27} \) \(\mathstrut -\mathstrut 80q^{28} \) \(\mathstrut -\mathstrut 34q^{29} \) \(\mathstrut +\mathstrut 140q^{30} \) \(\mathstrut -\mathstrut 280q^{31} \) \(\mathstrut -\mathstrut 105q^{32} \) \(\mathstrut -\mathstrut 425q^{33} \) \(\mathstrut -\mathstrut 78q^{34} \) \(\mathstrut +\mathstrut 70q^{35} \) \(\mathstrut -\mathstrut 725q^{36} \) \(\mathstrut +\mathstrut 190q^{37} \) \(\mathstrut +\mathstrut 620q^{38} \) \(\mathstrut -\mathstrut 181q^{39} \) \(\mathstrut -\mathstrut 370q^{40} \) \(\mathstrut -\mathstrut 538q^{41} \) \(\mathstrut +\mathstrut 370q^{42} \) \(\mathstrut -\mathstrut 455q^{43} \) \(\mathstrut +\mathstrut 1360q^{44} \) \(\mathstrut -\mathstrut 375q^{45} \) \(\mathstrut +\mathstrut 82q^{46} \) \(\mathstrut +\mathstrut 120q^{47} \) \(\mathstrut +\mathstrut 240q^{48} \) \(\mathstrut +\mathstrut 565q^{49} \) \(\mathstrut -\mathstrut 450q^{50} \) \(\mathstrut -\mathstrut 466q^{51} \) \(\mathstrut -\mathstrut 310q^{52} \) \(\mathstrut +\mathstrut 1090q^{53} \) \(\mathstrut +\mathstrut 914q^{54} \) \(\mathstrut -\mathstrut 510q^{55} \) \(\mathstrut +\mathstrut 172q^{56} \) \(\mathstrut -\mathstrut 450q^{57} \) \(\mathstrut +\mathstrut 595q^{58} \) \(\mathstrut +\mathstrut 809q^{59} \) \(\mathstrut -\mathstrut 400q^{60} \) \(\mathstrut -\mathstrut 502q^{61} \) \(\mathstrut +\mathstrut 500q^{62} \) \(\mathstrut -\mathstrut 390q^{63} \) \(\mathstrut -\mathstrut 2542q^{64} \) \(\mathstrut -\mathstrut 555q^{65} \) \(\mathstrut -\mathstrut 3196q^{66} \) \(\mathstrut +\mathstrut 475q^{67} \) \(\mathstrut +\mathstrut 505q^{68} \) \(\mathstrut +\mathstrut 479q^{69} \) \(\mathstrut -\mathstrut 160q^{70} \) \(\mathstrut -\mathstrut 127q^{71} \) \(\mathstrut +\mathstrut 1155q^{72} \) \(\mathstrut +\mathstrut 1170q^{73} \) \(\mathstrut -\mathstrut 849q^{74} \) \(\mathstrut +\mathstrut 1725q^{75} \) \(\mathstrut +\mathstrut 140q^{76} \) \(\mathstrut +\mathstrut 510q^{77} \) \(\mathstrut +\mathstrut 3070q^{78} \) \(\mathstrut +\mathstrut 480q^{79} \) \(\mathstrut +\mathstrut 1065q^{80} \) \(\mathstrut -\mathstrut 122q^{81} \) \(\mathstrut +\mathstrut 1515q^{82} \) \(\mathstrut +\mathstrut 520q^{83} \) \(\mathstrut -\mathstrut 1220q^{84} \) \(\mathstrut +\mathstrut 1205q^{85} \) \(\mathstrut -\mathstrut 3924q^{86} \) \(\mathstrut -\mathstrut 1615q^{87} \) \(\mathstrut +\mathstrut 1020q^{88} \) \(\mathstrut -\mathstrut 921q^{89} \) \(\mathstrut -\mathstrut 1450q^{90} \) \(\mathstrut -\mathstrut 1287q^{91} \) \(\mathstrut -\mathstrut 2080q^{92} \) \(\mathstrut -\mathstrut 2200q^{93} \) \(\mathstrut -\mathstrut 1040q^{94} \) \(\mathstrut -\mathstrut 1270q^{95} \) \(\mathstrut +\mathstrut 3840q^{96} \) \(\mathstrut +\mathstrut 415q^{97} \) \(\mathstrut -\mathstrut 1285q^{98} \) \(\mathstrut +\mathstrut 4420q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.219224 + 0.379706i 0.0775072 + 0.134246i 0.902174 0.431373i \(-0.141971\pi\)
−0.824667 + 0.565619i \(0.808637\pi\)
\(3\) 1.84233 + 3.19101i 0.354556 + 0.614110i 0.987042 0.160462i \(-0.0512985\pi\)
−0.632486 + 0.774572i \(0.717965\pi\)
\(4\) 3.90388 6.76172i 0.487985 0.845215i
\(5\) −17.8078 −1.59277 −0.796387 0.604787i \(-0.793258\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) −0.807764 + 1.39909i −0.0549614 + 0.0951959i
\(7\) −2.71922 + 4.70983i −0.146824 + 0.254307i −0.930052 0.367428i \(-0.880239\pi\)
0.783228 + 0.621735i \(0.213572\pi\)
\(8\) 6.93087 0.306304
\(9\) 6.71165 11.6249i 0.248579 0.430552i
\(10\) −3.90388 6.76172i −0.123452 0.213824i
\(11\) 11.2116 + 19.4191i 0.307313 + 0.532281i 0.977774 0.209664i \(-0.0672369\pi\)
−0.670461 + 0.741945i \(0.733904\pi\)
\(12\) 28.7689 0.692073
\(13\) 21.9730 + 41.4027i 0.468786 + 0.883312i
\(14\) −2.38447 −0.0455198
\(15\) −32.8078 56.8247i −0.564729 0.978139i
\(16\) −29.7116 51.4621i −0.464244 0.804095i
\(17\) −33.9924 + 58.8766i −0.484963 + 0.839981i −0.999851 0.0172769i \(-0.994500\pi\)
0.514888 + 0.857258i \(0.327834\pi\)
\(18\) 5.88540 0.0770668
\(19\) 40.4039 69.9816i 0.487857 0.844993i −0.512045 0.858958i \(-0.671112\pi\)
0.999902 + 0.0139650i \(0.00444535\pi\)
\(20\) −69.5194 + 120.411i −0.777251 + 1.34624i
\(21\) −20.0388 −0.208230
\(22\) −4.91571 + 8.51427i −0.0476379 + 0.0825113i
\(23\) −70.2656 121.704i −0.637017 1.10335i −0.986084 0.166248i \(-0.946835\pi\)
0.349067 0.937098i \(-0.386499\pi\)
\(24\) 12.7689 + 22.1165i 0.108602 + 0.188104i
\(25\) 192.116 1.53693
\(26\) −10.9039 + 17.4198i −0.0822472 + 0.131396i
\(27\) 148.946 1.06165
\(28\) 21.2311 + 36.7733i 0.143296 + 0.248196i
\(29\) 53.3466 + 92.3990i 0.341594 + 0.591657i 0.984729 0.174095i \(-0.0557001\pi\)
−0.643135 + 0.765753i \(0.722367\pi\)
\(30\) 14.3845 24.9146i 0.0875411 0.151626i
\(31\) −276.155 −1.59997 −0.799983 0.600023i \(-0.795158\pi\)
−0.799983 + 0.600023i \(0.795158\pi\)
\(32\) 40.7505 70.5819i 0.225117 0.389913i
\(33\) −41.3111 + 71.5529i −0.217919 + 0.377447i
\(34\) −29.8078 −0.150353
\(35\) 48.4233 83.8716i 0.233858 0.405054i
\(36\) −52.4029 90.7646i −0.242606 0.420206i
\(37\) 2.14584 + 3.71670i 0.00953442 + 0.0165141i 0.870753 0.491720i \(-0.163632\pi\)
−0.861219 + 0.508234i \(0.830298\pi\)
\(38\) 35.4299 0.151250
\(39\) −91.6349 + 146.394i −0.376239 + 0.601070i
\(40\) −123.423 −0.487873
\(41\) −113.884 197.254i −0.433799 0.751362i 0.563398 0.826186i \(-0.309494\pi\)
−0.997197 + 0.0748237i \(0.976161\pi\)
\(42\) −4.39298 7.60887i −0.0161393 0.0279541i
\(43\) −13.7647 + 23.8411i −0.0488162 + 0.0845521i −0.889401 0.457128i \(-0.848878\pi\)
0.840585 + 0.541680i \(0.182212\pi\)
\(44\) 175.076 0.599856
\(45\) −119.519 + 207.014i −0.395931 + 0.685773i
\(46\) 30.8078 53.3606i 0.0987469 0.171035i
\(47\) 318.617 0.988832 0.494416 0.869225i \(-0.335382\pi\)
0.494416 + 0.869225i \(0.335382\pi\)
\(48\) 109.477 189.620i 0.329202 0.570194i
\(49\) 156.712 + 271.433i 0.456885 + 0.791348i
\(50\) 42.1165 + 72.9479i 0.119123 + 0.206328i
\(51\) −250.501 −0.687787
\(52\) 365.734 + 13.0560i 0.975349 + 0.0348181i
\(53\) −67.6562 −0.175345 −0.0876726 0.996149i \(-0.527943\pi\)
−0.0876726 + 0.996149i \(0.527943\pi\)
\(54\) 32.6525 + 56.5558i 0.0822859 + 0.142523i
\(55\) −199.654 345.811i −0.489480 0.847804i
\(56\) −18.8466 + 32.6432i −0.0449729 + 0.0778953i
\(57\) 297.749 0.691892
\(58\) −23.3897 + 40.5121i −0.0529519 + 0.0917155i
\(59\) 145.557 252.113i 0.321186 0.556310i −0.659547 0.751663i \(-0.729252\pi\)
0.980733 + 0.195353i \(0.0625854\pi\)
\(60\) −512.311 −1.10232
\(61\) −331.655 + 574.444i −0.696133 + 1.20574i 0.273664 + 0.961825i \(0.411764\pi\)
−0.969797 + 0.243912i \(0.921569\pi\)
\(62\) −60.5398 104.858i −0.124009 0.214790i
\(63\) 36.5009 + 63.2215i 0.0729950 + 0.126431i
\(64\) −439.652 −0.858696
\(65\) −391.290 737.290i −0.746670 1.40692i
\(66\) −36.2255 −0.0675613
\(67\) 212.551 + 368.149i 0.387570 + 0.671291i 0.992122 0.125275i \(-0.0399812\pi\)
−0.604552 + 0.796566i \(0.706648\pi\)
\(68\) 265.405 + 459.695i 0.473310 + 0.819796i
\(69\) 258.905 448.436i 0.451717 0.782397i
\(70\) 42.4621 0.0725028
\(71\) 76.4815 132.470i 0.127841 0.221427i −0.794999 0.606611i \(-0.792529\pi\)
0.922840 + 0.385184i \(0.125862\pi\)
\(72\) 46.5175 80.5708i 0.0761409 0.131880i
\(73\) 117.268 0.188016 0.0940081 0.995571i \(-0.470032\pi\)
0.0940081 + 0.995571i \(0.470032\pi\)
\(74\) −0.940837 + 1.62958i −0.00147797 + 0.00255993i
\(75\) 353.942 + 613.045i 0.544929 + 0.943845i
\(76\) −315.464 546.400i −0.476134 0.824689i
\(77\) −121.948 −0.180484
\(78\) −75.6751 2.70146i −0.109853 0.00392154i
\(79\) 202.462 0.288339 0.144169 0.989553i \(-0.453949\pi\)
0.144169 + 0.989553i \(0.453949\pi\)
\(80\) 529.098 + 916.425i 0.739437 + 1.28074i
\(81\) 93.1932 + 161.415i 0.127837 + 0.221420i
\(82\) 49.9323 86.4853i 0.0672452 0.116472i
\(83\) 336.155 0.444552 0.222276 0.974984i \(-0.428651\pi\)
0.222276 + 0.974984i \(0.428651\pi\)
\(84\) −78.2292 + 135.497i −0.101613 + 0.175999i
\(85\) 605.329 1048.46i 0.772437 1.33790i
\(86\) −12.0702 −0.0151344
\(87\) −196.564 + 340.459i −0.242228 + 0.419552i
\(88\) 77.7065 + 134.592i 0.0941311 + 0.163040i
\(89\) −359.097 621.974i −0.427688 0.740777i 0.568979 0.822352i \(-0.307338\pi\)
−0.996667 + 0.0815748i \(0.974005\pi\)
\(90\) −104.806 −0.122750
\(91\) −254.750 9.09407i −0.293462 0.0104760i
\(92\) −1097.23 −1.24342
\(93\) −508.769 881.214i −0.567278 0.982555i
\(94\) 69.8485 + 120.981i 0.0766417 + 0.132747i
\(95\) −719.503 + 1246.22i −0.777047 + 1.34588i
\(96\) 300.303 0.319266
\(97\) −379.684 + 657.632i −0.397434 + 0.688376i −0.993409 0.114628i \(-0.963433\pi\)
0.595975 + 0.803003i \(0.296766\pi\)
\(98\) −68.7098 + 119.009i −0.0708238 + 0.122670i
\(99\) 300.994 0.305566
\(100\) 750.000 1299.04i 0.750000 1.29904i
\(101\) 174.348 + 301.980i 0.171766 + 0.297507i 0.939037 0.343816i \(-0.111720\pi\)
−0.767272 + 0.641322i \(0.778386\pi\)
\(102\) −54.9157 95.1168i −0.0533085 0.0923330i
\(103\) −580.303 −0.555136 −0.277568 0.960706i \(-0.589528\pi\)
−0.277568 + 0.960706i \(0.589528\pi\)
\(104\) 152.292 + 286.957i 0.143591 + 0.270562i
\(105\) 356.847 0.331663
\(106\) −14.8318 25.6895i −0.0135905 0.0235395i
\(107\) −285.747 494.928i −0.258170 0.447163i 0.707582 0.706631i \(-0.249786\pi\)
−0.965752 + 0.259468i \(0.916453\pi\)
\(108\) 581.468 1007.13i 0.518072 0.897327i
\(109\) 176.004 0.154661 0.0773307 0.997005i \(-0.475360\pi\)
0.0773307 + 0.997005i \(0.475360\pi\)
\(110\) 87.5379 151.620i 0.0758765 0.131422i
\(111\) −7.90668 + 13.6948i −0.00676098 + 0.0117104i
\(112\) 323.170 0.272649
\(113\) −632.441 + 1095.42i −0.526505 + 0.911933i 0.473018 + 0.881053i \(0.343165\pi\)
−0.999523 + 0.0308807i \(0.990169\pi\)
\(114\) 65.2736 + 113.057i 0.0536266 + 0.0928840i
\(115\) 1251.27 + 2167.27i 1.01462 + 1.75738i
\(116\) 833.035 0.666770
\(117\) 628.778 + 22.4462i 0.496842 + 0.0177363i
\(118\) 127.638 0.0995768
\(119\) −184.866 320.197i −0.142409 0.246659i
\(120\) −227.386 393.845i −0.172979 0.299608i
\(121\) 414.098 717.239i 0.311118 0.538872i
\(122\) −290.827 −0.215821
\(123\) 419.625 726.812i 0.307613 0.532801i
\(124\) −1078.08 + 1867.29i −0.780760 + 1.35232i
\(125\) −1195.19 −0.855211
\(126\) −16.0037 + 27.7193i −0.0113153 + 0.0195986i
\(127\) −1302.05 2255.22i −0.909752 1.57574i −0.814408 0.580293i \(-0.802938\pi\)
−0.0953448 0.995444i \(-0.530395\pi\)
\(128\) −422.386 731.594i −0.291672 0.505190i
\(129\) −101.436 −0.0692323
\(130\) 194.174 310.207i 0.131001 0.209284i
\(131\) 2131.70 1.42174 0.710870 0.703324i \(-0.248302\pi\)
0.710870 + 0.703324i \(0.248302\pi\)
\(132\) 322.547 + 558.668i 0.212683 + 0.368377i
\(133\) 219.734 + 380.591i 0.143259 + 0.248131i
\(134\) −93.1922 + 161.414i −0.0600790 + 0.104060i
\(135\) −2652.40 −1.69098
\(136\) −235.597 + 408.066i −0.148546 + 0.257290i
\(137\) −343.992 + 595.812i −0.214520 + 0.371560i −0.953124 0.302580i \(-0.902152\pi\)
0.738604 + 0.674140i \(0.235485\pi\)
\(138\) 227.032 0.140045
\(139\) 339.790 588.534i 0.207343 0.359128i −0.743534 0.668698i \(-0.766852\pi\)
0.950877 + 0.309570i \(0.100185\pi\)
\(140\) −378.078 654.850i −0.228239 0.395321i
\(141\) 586.998 + 1016.71i 0.350597 + 0.607252i
\(142\) 67.0662 0.0396343
\(143\) −557.652 + 890.890i −0.326106 + 0.520979i
\(144\) −797.656 −0.461607
\(145\) −949.983 1645.42i −0.544082 0.942377i
\(146\) 25.7079 + 44.5274i 0.0145726 + 0.0252405i
\(147\) −577.429 + 1000.14i −0.323983 + 0.561155i
\(148\) 33.5084 0.0186106
\(149\) 987.731 1710.80i 0.543074 0.940632i −0.455651 0.890159i \(-0.650593\pi\)
0.998725 0.0504739i \(-0.0160732\pi\)
\(150\) −155.185 + 268.788i −0.0844719 + 0.146310i
\(151\) 1803.24 0.971824 0.485912 0.874008i \(-0.338487\pi\)
0.485912 + 0.874008i \(0.338487\pi\)
\(152\) 280.034 485.033i 0.149433 0.258825i
\(153\) 456.290 + 790.318i 0.241104 + 0.417604i
\(154\) −26.7339 46.3044i −0.0139888 0.0242293i
\(155\) 4917.71 2.54839
\(156\) 632.140 + 1191.11i 0.324434 + 0.611316i
\(157\) −397.168 −0.201894 −0.100947 0.994892i \(-0.532187\pi\)
−0.100947 + 0.994892i \(0.532187\pi\)
\(158\) 44.3845 + 76.8762i 0.0223483 + 0.0387085i
\(159\) −124.645 215.892i −0.0621698 0.107681i
\(160\) −725.675 + 1256.91i −0.358560 + 0.621044i
\(161\) 764.272 0.374118
\(162\) −40.8603 + 70.7721i −0.0198166 + 0.0343233i
\(163\) −470.696 + 815.270i −0.226183 + 0.391760i −0.956674 0.291162i \(-0.905958\pi\)
0.730491 + 0.682922i \(0.239291\pi\)
\(164\) −1778.37 −0.846750
\(165\) 735.658 1274.20i 0.347096 0.601189i
\(166\) 73.6932 + 127.640i 0.0344560 + 0.0596796i
\(167\) −1840.22 3187.35i −0.852696 1.47691i −0.878766 0.477252i \(-0.841633\pi\)
0.0260704 0.999660i \(-0.491701\pi\)
\(168\) −138.886 −0.0637817
\(169\) −1231.37 + 1819.49i −0.560479 + 0.828168i
\(170\) 530.810 0.239478
\(171\) −542.353 939.383i −0.242543 0.420096i
\(172\) 107.471 + 186.146i 0.0476431 + 0.0825203i
\(173\) −711.387 + 1232.16i −0.312634 + 0.541499i −0.978932 0.204187i \(-0.934545\pi\)
0.666297 + 0.745686i \(0.267878\pi\)
\(174\) −172.366 −0.0750978
\(175\) −522.408 + 904.837i −0.225659 + 0.390853i
\(176\) 666.233 1153.95i 0.285336 0.494217i
\(177\) 1072.66 0.455514
\(178\) 157.445 272.703i 0.0662978 0.114831i
\(179\) −583.946 1011.42i −0.243833 0.422331i 0.717970 0.696074i \(-0.245072\pi\)
−0.961803 + 0.273743i \(0.911738\pi\)
\(180\) 933.179 + 1616.31i 0.386417 + 0.669294i
\(181\) −1133.96 −0.465673 −0.232836 0.972516i \(-0.574801\pi\)
−0.232836 + 0.972516i \(0.574801\pi\)
\(182\) −52.3940 98.7237i −0.0213390 0.0402082i
\(183\) −2444.07 −0.987274
\(184\) −487.002 843.512i −0.195121 0.337959i
\(185\) −38.2126 66.1861i −0.0151862 0.0263032i
\(186\) 223.068 386.366i 0.0879364 0.152310i
\(187\) −1524.44 −0.596141
\(188\) 1243.84 2154.40i 0.482536 0.835776i
\(189\) −405.018 + 701.511i −0.155877 + 0.269986i
\(190\) −630.928 −0.240907
\(191\) −1341.06 + 2322.78i −0.508040 + 0.879952i 0.491916 + 0.870642i \(0.336297\pi\)
−0.999957 + 0.00930919i \(0.997037\pi\)
\(192\) −809.985 1402.93i −0.304456 0.527334i
\(193\) 985.333 + 1706.65i 0.367491 + 0.636514i 0.989173 0.146757i \(-0.0468834\pi\)
−0.621681 + 0.783270i \(0.713550\pi\)
\(194\) −332.943 −0.123216
\(195\) 1631.81 2606.94i 0.599265 0.957369i
\(196\) 2447.14 0.891813
\(197\) 2008.02 + 3478.00i 0.726222 + 1.25785i 0.958469 + 0.285197i \(0.0920590\pi\)
−0.232247 + 0.972657i \(0.574608\pi\)
\(198\) 65.9851 + 114.290i 0.0236836 + 0.0410212i
\(199\) 2113.03 3659.87i 0.752707 1.30373i −0.193800 0.981041i \(-0.562081\pi\)
0.946506 0.322685i \(-0.104585\pi\)
\(200\) 1331.53 0.470768
\(201\) −783.177 + 1356.50i −0.274831 + 0.476021i
\(202\) −76.4426 + 132.402i −0.0266261 + 0.0461178i
\(203\) −580.245 −0.200617
\(204\) −977.926 + 1693.82i −0.335630 + 0.581328i
\(205\) 2028.03 + 3512.65i 0.690944 + 1.19675i
\(206\) −127.216 220.345i −0.0430270 0.0745250i
\(207\) −1886.39 −0.633398
\(208\) 1477.82 2360.92i 0.492635 0.787021i
\(209\) 1811.98 0.599699
\(210\) 78.2292 + 135.497i 0.0257063 + 0.0445247i
\(211\) −682.334 1181.84i −0.222625 0.385597i 0.732980 0.680251i \(-0.238129\pi\)
−0.955604 + 0.294654i \(0.904796\pi\)
\(212\) −264.122 + 457.473i −0.0855659 + 0.148204i
\(213\) 563.617 0.181307
\(214\) 125.285 217.000i 0.0400201 0.0693168i
\(215\) 245.118 424.557i 0.0777532 0.134672i
\(216\) 1032.33 0.325189
\(217\) 750.928 1300.65i 0.234914 0.406883i
\(218\) 38.5842 + 66.8297i 0.0119874 + 0.0207628i
\(219\) 216.046 + 374.203i 0.0666624 + 0.115463i
\(220\) −3117.71 −0.955436
\(221\) −3184.57 113.683i −0.969309 0.0346025i
\(222\) −6.93332 −0.00209610
\(223\) 529.734 + 917.527i 0.159075 + 0.275525i 0.934535 0.355871i \(-0.115816\pi\)
−0.775461 + 0.631396i \(0.782482\pi\)
\(224\) 221.619 + 383.856i 0.0661052 + 0.114498i
\(225\) 1289.42 2233.34i 0.382050 0.661729i
\(226\) −554.584 −0.163232
\(227\) −1732.10 + 3000.08i −0.506446 + 0.877190i 0.493526 + 0.869731i \(0.335708\pi\)
−0.999972 + 0.00745930i \(0.997626\pi\)
\(228\) 1162.38 2013.30i 0.337633 0.584797i
\(229\) −2324.64 −0.670815 −0.335407 0.942073i \(-0.608874\pi\)
−0.335407 + 0.942073i \(0.608874\pi\)
\(230\) −548.617 + 950.233i −0.157282 + 0.272420i
\(231\) −224.668 389.137i −0.0639917 0.110837i
\(232\) 369.738 + 640.405i 0.104631 + 0.181227i
\(233\) −3731.01 −1.04904 −0.524521 0.851398i \(-0.675755\pi\)
−0.524521 + 0.851398i \(0.675755\pi\)
\(234\) 129.320 + 243.672i 0.0361279 + 0.0680741i
\(235\) −5673.86 −1.57499
\(236\) −1136.48 1968.44i −0.313468 0.542942i
\(237\) 373.002 + 646.058i 0.102232 + 0.177072i
\(238\) 81.0540 140.390i 0.0220754 0.0382357i
\(239\) 6044.47 1.63592 0.817958 0.575278i \(-0.195106\pi\)
0.817958 + 0.575278i \(0.195106\pi\)
\(240\) −1949.55 + 3376.71i −0.524344 + 0.908191i
\(241\) 2586.98 4480.78i 0.691461 1.19765i −0.279898 0.960030i \(-0.590301\pi\)
0.971359 0.237616i \(-0.0763659\pi\)
\(242\) 363.120 0.0964556
\(243\) 1667.39 2888.00i 0.440176 0.762408i
\(244\) 2589.49 + 4485.12i 0.679405 + 1.17676i
\(245\) −2790.68 4833.61i −0.727715 1.26044i
\(246\) 367.967 0.0953688
\(247\) 3785.22 + 135.125i 0.975093 + 0.0348090i
\(248\) −1914.00 −0.490076
\(249\) 619.309 + 1072.67i 0.157619 + 0.273004i
\(250\) −262.015 453.823i −0.0662851 0.114809i
\(251\) −2810.37 + 4867.70i −0.706728 + 1.22409i 0.259337 + 0.965787i \(0.416496\pi\)
−0.966064 + 0.258301i \(0.916837\pi\)
\(252\) 569.981 0.142482
\(253\) 1575.59 2729.00i 0.391527 0.678144i
\(254\) 570.882 988.796i 0.141025 0.244262i
\(255\) 4460.86 1.09549
\(256\) −1573.42 + 2725.24i −0.384135 + 0.665341i
\(257\) 837.070 + 1449.85i 0.203171 + 0.351903i 0.949549 0.313620i \(-0.101542\pi\)
−0.746377 + 0.665523i \(0.768209\pi\)
\(258\) −22.2372 38.5160i −0.00536601 0.00929420i
\(259\) −23.3401 −0.00559954
\(260\) −6512.90 232.498i −1.55351 0.0554574i
\(261\) 1432.17 0.339653
\(262\) 467.320 + 809.422i 0.110195 + 0.190864i
\(263\) 3154.59 + 5463.91i 0.739622 + 1.28106i 0.952666 + 0.304020i \(0.0983289\pi\)
−0.213044 + 0.977043i \(0.568338\pi\)
\(264\) −286.322 + 495.924i −0.0667496 + 0.115614i
\(265\) 1204.81 0.279285
\(266\) −96.3419 + 166.869i −0.0222072 + 0.0384639i
\(267\) 1323.15 2291.76i 0.303279 0.525294i
\(268\) 3319.09 0.756514
\(269\) 1241.37 2150.11i 0.281366 0.487340i −0.690356 0.723470i \(-0.742546\pi\)
0.971721 + 0.236131i \(0.0758793\pi\)
\(270\) −581.468 1007.13i −0.131063 0.227008i
\(271\) −1417.86 2455.81i −0.317819 0.550478i 0.662214 0.749315i \(-0.269617\pi\)
−0.980033 + 0.198837i \(0.936284\pi\)
\(272\) 4039.88 0.900566
\(273\) −440.313 829.662i −0.0976153 0.183932i
\(274\) −301.645 −0.0665075
\(275\) 2153.94 + 3730.74i 0.472318 + 0.818080i
\(276\) −2021.47 3501.28i −0.440863 0.763596i
\(277\) 1918.76 3323.38i 0.416198 0.720876i −0.579355 0.815075i \(-0.696696\pi\)
0.995553 + 0.0941989i \(0.0300290\pi\)
\(278\) 297.960 0.0642822
\(279\) −1853.46 + 3210.28i −0.397719 + 0.688869i
\(280\) 335.616 581.303i 0.0716317 0.124070i
\(281\) −9122.13 −1.93659 −0.968293 0.249819i \(-0.919629\pi\)
−0.968293 + 0.249819i \(0.919629\pi\)
\(282\) −257.368 + 445.774i −0.0543476 + 0.0941328i
\(283\) −1063.92 1842.77i −0.223476 0.387072i 0.732385 0.680891i \(-0.238407\pi\)
−0.955861 + 0.293819i \(0.905074\pi\)
\(284\) −597.150 1034.29i −0.124769 0.216106i
\(285\) −5302.24 −1.10203
\(286\) −460.527 16.4399i −0.0952152 0.00339900i
\(287\) 1238.71 0.254769
\(288\) −547.005 947.441i −0.111919 0.193849i
\(289\) 145.530 + 252.066i 0.0296215 + 0.0513059i
\(290\) 416.518 721.430i 0.0843405 0.146082i
\(291\) −2798.01 −0.563651
\(292\) 457.800 792.934i 0.0917491 0.158914i
\(293\) −4137.38 + 7166.16i −0.824944 + 1.42884i 0.0770183 + 0.997030i \(0.475460\pi\)
−0.901962 + 0.431815i \(0.857873\pi\)
\(294\) −506.344 −0.100444
\(295\) −2592.05 + 4489.56i −0.511576 + 0.886076i
\(296\) 14.8725 + 25.7600i 0.00292043 + 0.00505834i
\(297\) 1669.93 + 2892.40i 0.326260 + 0.565099i
\(298\) 866.136 0.168369
\(299\) 3494.92 5583.38i 0.675974 1.07992i
\(300\) 5526.99 1.06367
\(301\) −74.8585 129.659i −0.0143348 0.0248286i
\(302\) 395.312 + 684.701i 0.0753234 + 0.130464i
\(303\) −642.414 + 1112.69i −0.121801 + 0.210966i
\(304\) −4801.86 −0.905940
\(305\) 5906.04 10229.6i 1.10878 1.92047i
\(306\) −200.059 + 346.513i −0.0373746 + 0.0647347i
\(307\) −3610.49 −0.671211 −0.335605 0.942003i \(-0.608941\pi\)
−0.335605 + 0.942003i \(0.608941\pi\)
\(308\) −476.070 + 824.578i −0.0880734 + 0.152548i
\(309\) −1069.11 1851.75i −0.196827 0.340914i
\(310\) 1078.08 + 1867.29i 0.197518 + 0.342112i
\(311\) 3331.06 0.607354 0.303677 0.952775i \(-0.401786\pi\)
0.303677 + 0.952775i \(0.401786\pi\)
\(312\) −635.110 + 1014.63i −0.115244 + 0.184110i
\(313\) −358.125 −0.0646724 −0.0323362 0.999477i \(-0.510295\pi\)
−0.0323362 + 0.999477i \(0.510295\pi\)
\(314\) −87.0685 150.807i −0.0156483 0.0271036i
\(315\) −650.000 1125.83i −0.116265 0.201376i
\(316\) 790.388 1368.99i 0.140705 0.243708i
\(317\) 3047.46 0.539944 0.269972 0.962868i \(-0.412986\pi\)
0.269972 + 0.962868i \(0.412986\pi\)
\(318\) 54.6503 94.6570i 0.00963721 0.0166921i
\(319\) −1196.21 + 2071.89i −0.209952 + 0.363647i
\(320\) 7829.23 1.36771
\(321\) 1052.88 1823.64i 0.183072 0.317089i
\(322\) 167.546 + 290.199i 0.0289969 + 0.0502241i
\(323\) 2746.85 + 4757.69i 0.473185 + 0.819581i
\(324\) 1455.26 0.249530
\(325\) 4221.38 + 7954.15i 0.720492 + 1.35759i
\(326\) −412.751 −0.0701232
\(327\) 324.257 + 561.629i 0.0548362 + 0.0949791i
\(328\) −789.318 1367.14i −0.132874 0.230145i
\(329\) −866.392 + 1500.63i −0.145185 + 0.251467i
\(330\) 645.094 0.107610
\(331\) −3847.39 + 6663.87i −0.638887 + 1.10658i 0.346791 + 0.937942i \(0.387271\pi\)
−0.985677 + 0.168641i \(0.946062\pi\)
\(332\) 1312.31 2272.99i 0.216935 0.375742i
\(333\) 57.6084 0.00948025
\(334\) 806.838 1397.48i 0.132180 0.228943i
\(335\) −3785.05 6555.90i −0.617312 1.06922i
\(336\) 595.386 + 1031.24i 0.0966696 + 0.167437i
\(337\) 4712.21 0.761693 0.380846 0.924638i \(-0.375633\pi\)
0.380846 + 0.924638i \(0.375633\pi\)
\(338\) −960.817 68.6862i −0.154620 0.0110534i
\(339\) −4660.66 −0.746703
\(340\) −4726.27 8186.13i −0.753876 1.30575i
\(341\) −3096.16 5362.70i −0.491690 0.851632i
\(342\) 237.793 411.870i 0.0375976 0.0651210i
\(343\) −3569.92 −0.561976
\(344\) −95.4013 + 165.240i −0.0149526 + 0.0258986i
\(345\) −4610.52 + 7985.65i −0.719484 + 1.24618i
\(346\) −623.811 −0.0969257
\(347\) 2630.99 4557.01i 0.407029 0.704995i −0.587526 0.809205i \(-0.699898\pi\)
0.994555 + 0.104210i \(0.0332315\pi\)
\(348\) 1534.72 + 2658.22i 0.236408 + 0.409470i
\(349\) −25.1672 43.5909i −0.00386009 0.00668587i 0.864089 0.503339i \(-0.167895\pi\)
−0.867949 + 0.496653i \(0.834562\pi\)
\(350\) −458.096 −0.0699608
\(351\) 3272.79 + 6166.77i 0.497689 + 0.937772i
\(352\) 1827.52 0.276725
\(353\) −4528.82 7844.14i −0.682846 1.18272i −0.974109 0.226081i \(-0.927409\pi\)
0.291263 0.956643i \(-0.405925\pi\)
\(354\) 235.152 + 407.295i 0.0353056 + 0.0611511i
\(355\) −1361.96 + 2358.99i −0.203621 + 0.352683i
\(356\) −5607.49 −0.834821
\(357\) 681.168 1179.82i 0.100984 0.174909i
\(358\) 256.029 443.456i 0.0377977 0.0654675i
\(359\) 7177.86 1.05525 0.527623 0.849479i \(-0.323083\pi\)
0.527623 + 0.849479i \(0.323083\pi\)
\(360\) −828.373 + 1434.78i −0.121275 + 0.210055i
\(361\) 164.553 + 285.014i 0.0239908 + 0.0415532i
\(362\) −248.591 430.573i −0.0360930 0.0625150i
\(363\) 3051.62 0.441235
\(364\) −1056.00 + 1687.04i −0.152059 + 0.242926i
\(365\) −2088.28 −0.299467
\(366\) −535.798 928.030i −0.0765209 0.132538i
\(367\) −2002.07 3467.69i −0.284761 0.493221i 0.687790 0.725910i \(-0.258581\pi\)
−0.972551 + 0.232689i \(0.925248\pi\)
\(368\) −4175.41 + 7232.03i −0.591463 + 1.02444i
\(369\) −3057.41 −0.431334
\(370\) 16.7542 29.0191i 0.00235408 0.00407738i
\(371\) 183.972 318.649i 0.0257449 0.0445915i
\(372\) −7944.70 −1.10729
\(373\) 5007.09 8672.53i 0.695060 1.20388i −0.275101 0.961415i \(-0.588711\pi\)
0.970161 0.242464i \(-0.0779555\pi\)
\(374\) −334.194 578.841i −0.0462053 0.0800299i
\(375\) −2201.94 3813.87i −0.303221 0.525194i
\(376\) 2208.30 0.302883
\(377\) −2653.39 + 4238.98i −0.362484 + 0.579094i
\(378\) −355.158 −0.0483263
\(379\) 4084.56 + 7074.66i 0.553587 + 0.958842i 0.998012 + 0.0630252i \(0.0200749\pi\)
−0.444425 + 0.895816i \(0.646592\pi\)
\(380\) 5617.71 + 9730.16i 0.758375 + 1.31354i
\(381\) 4797.62 8309.73i 0.645117 1.11738i
\(382\) −1175.97 −0.157507
\(383\) 3655.12 6330.86i 0.487645 0.844626i −0.512254 0.858834i \(-0.671189\pi\)
0.999899 + 0.0142079i \(0.00452267\pi\)
\(384\) 1556.35 2695.67i 0.206828 0.358237i
\(385\) 2171.62 0.287470
\(386\) −432.017 + 748.275i −0.0569665 + 0.0986689i
\(387\) 184.767 + 320.027i 0.0242694 + 0.0420358i
\(388\) 2964.48 + 5134.64i 0.387884 + 0.671834i
\(389\) 8785.47 1.14509 0.572546 0.819872i \(-0.305956\pi\)
0.572546 + 0.819872i \(0.305956\pi\)
\(390\) 1347.60 + 48.1069i 0.174971 + 0.00624612i
\(391\) 9553.99 1.23572
\(392\) 1086.15 + 1881.26i 0.139946 + 0.242393i
\(393\) 3927.30 + 6802.29i 0.504087 + 0.873104i
\(394\) −880.412 + 1524.92i −0.112575 + 0.194986i
\(395\) −3605.40 −0.459259
\(396\) 1175.05 2035.24i 0.149112 0.258269i
\(397\) −5633.40 + 9757.33i −0.712171 + 1.23352i 0.251869 + 0.967761i \(0.418955\pi\)
−0.964040 + 0.265756i \(0.914379\pi\)
\(398\) 1852.90 0.233361
\(399\) −809.646 + 1402.35i −0.101586 + 0.175953i
\(400\) −5708.10 9886.71i −0.713512 1.23584i
\(401\) −788.117 1365.06i −0.0981464 0.169995i 0.812771 0.582583i \(-0.197958\pi\)
−0.910917 + 0.412589i \(0.864625\pi\)
\(402\) −686.763 −0.0852055
\(403\) −6067.96 11433.6i −0.750042 1.41327i
\(404\) 2722.54 0.335276
\(405\) −1659.56 2874.45i −0.203616 0.352672i
\(406\) −127.203 220.323i −0.0155493 0.0269321i
\(407\) −48.1168 + 83.3407i −0.00586010 + 0.0101500i
\(408\) −1736.19 −0.210672
\(409\) −3377.89 + 5850.68i −0.408377 + 0.707329i −0.994708 0.102742i \(-0.967238\pi\)
0.586331 + 0.810071i \(0.300572\pi\)
\(410\) −889.183 + 1540.11i −0.107106 + 0.185514i
\(411\) −2534.99 −0.304238
\(412\) −2265.43 + 3923.85i −0.270898 + 0.469209i
\(413\) 791.606 + 1371.10i 0.0943157 + 0.163360i
\(414\) −413.542 716.275i −0.0490929 0.0850314i
\(415\) −5986.17 −0.708072
\(416\) 3817.69 + 136.284i 0.449947 + 0.0160622i
\(417\) 2504.02 0.294059
\(418\) 397.228 + 688.019i 0.0464810 + 0.0805074i
\(419\) −5378.09 9315.13i −0.627057 1.08610i −0.988139 0.153561i \(-0.950926\pi\)
0.361082 0.932534i \(-0.382408\pi\)
\(420\) 1393.09 2412.90i 0.161847 0.280327i
\(421\) 7886.03 0.912925 0.456463 0.889743i \(-0.349116\pi\)
0.456463 + 0.889743i \(0.349116\pi\)
\(422\) 299.167 518.173i 0.0345100 0.0597731i
\(423\) 2138.45 3703.90i 0.245803 0.425744i
\(424\) −468.916 −0.0537089
\(425\) −6530.50 + 11311.2i −0.745355 + 1.29099i
\(426\) 123.558 + 214.009i 0.0140526 + 0.0243398i
\(427\) −1803.69 3124.08i −0.204418 0.354063i
\(428\) −4462.08 −0.503932
\(429\) −3870.22 138.159i −0.435561 0.0155487i
\(430\) 214.943 0.0241057
\(431\) 7042.31 + 12197.6i 0.787044 + 1.36320i 0.927770 + 0.373152i \(0.121723\pi\)
−0.140726 + 0.990049i \(0.544944\pi\)
\(432\) −4425.43 7665.07i −0.492867 0.853671i
\(433\) −932.072 + 1614.40i −0.103447 + 0.179175i −0.913103 0.407730i \(-0.866321\pi\)
0.809656 + 0.586905i \(0.199654\pi\)
\(434\) 658.485 0.0728301
\(435\) 3500.36 6062.81i 0.385815 0.668252i
\(436\) 687.098 1190.09i 0.0754725 0.130722i
\(437\) −11356.0 −1.24309
\(438\) −94.7249 + 164.068i −0.0103336 + 0.0178984i
\(439\) −3077.24 5329.94i −0.334553 0.579463i 0.648846 0.760920i \(-0.275252\pi\)
−0.983399 + 0.181457i \(0.941919\pi\)
\(440\) −1383.78 2396.77i −0.149930 0.259686i
\(441\) 4207.17 0.454289
\(442\) −654.966 1234.12i −0.0704832 0.132808i
\(443\) −14539.3 −1.55933 −0.779663 0.626200i \(-0.784609\pi\)
−0.779663 + 0.626200i \(0.784609\pi\)
\(444\) 61.7335 + 106.926i 0.00659852 + 0.0114290i
\(445\) 6394.72 + 11076.0i 0.681210 + 1.17989i
\(446\) −232.261 + 402.287i −0.0246589 + 0.0427104i
\(447\) 7278.90 0.770202
\(448\) 1195.51 2070.69i 0.126077 0.218373i
\(449\) 3521.93 6100.17i 0.370179 0.641169i −0.619414 0.785065i \(-0.712630\pi\)
0.989593 + 0.143896i \(0.0459630\pi\)
\(450\) 1130.68 0.118446
\(451\) 2553.66 4423.08i 0.266624 0.461806i
\(452\) 4937.95 + 8552.78i 0.513853 + 0.890020i
\(453\) 3322.16 + 5754.15i 0.344567 + 0.596807i
\(454\) −1518.87 −0.157013
\(455\) 4536.52 + 161.945i 0.467418 + 0.0166859i
\(456\) 2063.66 0.211929
\(457\) −7049.43 12210.0i −0.721572 1.24980i −0.960370 0.278730i \(-0.910087\pi\)
0.238798 0.971069i \(-0.423247\pi\)
\(458\) −509.616 882.681i −0.0519930 0.0900545i
\(459\) −5063.04 + 8769.44i −0.514863 + 0.891770i
\(460\) 19539.3 1.98049
\(461\) −7224.85 + 12513.8i −0.729924 + 1.26426i 0.226991 + 0.973897i \(0.427111\pi\)
−0.956915 + 0.290368i \(0.906222\pi\)
\(462\) 98.5051 170.616i 0.00991964 0.0171813i
\(463\) 15806.5 1.58659 0.793293 0.608840i \(-0.208365\pi\)
0.793293 + 0.608840i \(0.208365\pi\)
\(464\) 3170.03 5490.65i 0.317166 0.549347i
\(465\) 9060.04 + 15692.4i 0.903547 + 1.56499i
\(466\) −817.926 1416.69i −0.0813083 0.140830i
\(467\) −15071.3 −1.49340 −0.746699 0.665162i \(-0.768362\pi\)
−0.746699 + 0.665162i \(0.768362\pi\)
\(468\) 2606.45 4164.00i 0.257443 0.411284i
\(469\) −2311.89 −0.227619
\(470\) −1243.84 2154.40i −0.122073 0.211437i
\(471\) −731.713 1267.36i −0.0715830 0.123985i
\(472\) 1008.84 1747.36i 0.0983804 0.170400i
\(473\) −617.299 −0.0600073
\(474\) −163.542 + 283.262i −0.0158475 + 0.0274487i
\(475\) 7762.25 13444.6i 0.749803 1.29870i
\(476\) −2886.78 −0.277973
\(477\) −454.085 + 786.498i −0.0435872 + 0.0754953i
\(478\) 1325.09 + 2295.12i 0.126795 + 0.219616i
\(479\) 196.272 + 339.954i 0.0187222 + 0.0324277i 0.875235 0.483698i \(-0.160707\pi\)
−0.856513 + 0.516126i \(0.827374\pi\)
\(480\) −5347.73 −0.508519
\(481\) −106.731 + 170.511i −0.0101175 + 0.0161634i
\(482\) 2268.51 0.214373
\(483\) 1408.04 + 2438.80i 0.132646 + 0.229750i
\(484\) −3233.18 5600.03i −0.303642 0.525923i
\(485\) 6761.33 11711.0i 0.633023 1.09643i
\(486\) 1462.12 0.136467
\(487\) −4748.94 + 8225.41i −0.441879 + 0.765357i −0.997829 0.0658588i \(-0.979021\pi\)
0.555950 + 0.831216i \(0.312355\pi\)
\(488\) −2298.66 + 3981.40i −0.213228 + 0.369322i
\(489\) −3468.71 −0.320778
\(490\) 1223.57 2119.28i 0.112806 0.195386i
\(491\) 946.912 + 1640.10i 0.0870337 + 0.150747i 0.906256 0.422729i \(-0.138928\pi\)
−0.819222 + 0.573476i \(0.805595\pi\)
\(492\) −3276.34 5674.78i −0.300221 0.519998i
\(493\) −7253.52 −0.662641
\(494\) 778.502 + 1466.90i 0.0709038 + 0.133601i
\(495\) −5360.04 −0.486699
\(496\) 8205.03 + 14211.5i 0.742775 + 1.28652i
\(497\) 415.941 + 720.430i 0.0375402 + 0.0650216i
\(498\) −271.534 + 470.311i −0.0244332 + 0.0423196i
\(499\) −13370.1 −1.19945 −0.599727 0.800205i \(-0.704724\pi\)
−0.599727 + 0.800205i \(0.704724\pi\)
\(500\) −4665.90 + 8081.57i −0.417330 + 0.722838i
\(501\) 6780.57 11744.3i 0.604658 1.04730i
\(502\) −2464.39 −0.219106
\(503\) −2777.36 + 4810.52i −0.246195 + 0.426423i −0.962467 0.271399i \(-0.912514\pi\)
0.716272 + 0.697822i \(0.245847\pi\)
\(504\) 252.983 + 438.180i 0.0223587 + 0.0387263i
\(505\) −3104.76 5377.60i −0.273584 0.473861i
\(506\) 1381.62 0.121385
\(507\) −8074.59 577.231i −0.707308 0.0505635i
\(508\) −20332.3 −1.77578
\(509\) −1098.78 1903.13i −0.0956824 0.165727i 0.814211 0.580569i \(-0.197170\pi\)
−0.909893 + 0.414843i \(0.863837\pi\)
\(510\) 977.926 + 1693.82i 0.0849084 + 0.147066i
\(511\) −318.878 + 552.313i −0.0276053 + 0.0478139i
\(512\) −8137.89 −0.702437
\(513\) 6018.00 10423.5i 0.517936 0.897091i
\(514\) −367.011 + 635.682i −0.0314945 + 0.0545500i
\(515\) 10333.9 0.884206
\(516\) −395.996 + 685.884i −0.0337844 + 0.0585162i
\(517\) 3572.23 + 6187.28i 0.303881 + 0.526337i
\(518\) −5.11669 8.86237i −0.000434005 0.000751718i
\(519\) −5242.44 −0.443386
\(520\) −2711.98 5110.06i −0.228708 0.430944i
\(521\) 17005.2 1.42997 0.714983 0.699142i \(-0.246435\pi\)
0.714983 + 0.699142i \(0.246435\pi\)
\(522\) 313.966 + 543.805i 0.0263255 + 0.0455972i
\(523\) 7243.11 + 12545.4i 0.605581 + 1.04890i 0.991959 + 0.126557i \(0.0403928\pi\)
−0.386378 + 0.922341i \(0.626274\pi\)
\(524\) 8321.92 14414.0i 0.693788 1.20168i
\(525\) −3849.79 −0.320035
\(526\) −1383.12 + 2395.64i −0.114652 + 0.198583i
\(527\) 9387.19 16259.1i 0.775925 1.34394i
\(528\) 4909.68 0.404671
\(529\) −3791.02 + 6566.23i −0.311582 + 0.539675i
\(530\) 264.122 + 457.473i 0.0216466 + 0.0374931i
\(531\) −1953.86 3384.18i −0.159680 0.276574i
\(532\) 3431.27 0.279632
\(533\) 5664.46 9049.39i 0.460328 0.735408i
\(534\) 1160.26 0.0940252
\(535\) 5088.51 + 8813.56i 0.411206 + 0.712230i
\(536\) 1473.16 + 2551.59i 0.118714 + 0.205619i
\(537\) 2151.64 3726.75i 0.172905 0.299481i
\(538\) 1088.55 0.0872315
\(539\) −3513.99 + 6086.41i −0.280813 + 0.486383i
\(540\) −10354.6 + 17934.8i −0.825172 + 1.42924i
\(541\) −15266.7 −1.21325 −0.606623 0.794990i \(-0.707476\pi\)
−0.606623 + 0.794990i \(0.707476\pi\)
\(542\) 621.657 1076.74i 0.0492665 0.0853321i
\(543\) −2089.13 3618.48i −0.165107 0.285974i
\(544\) 2770.41 + 4798.50i 0.218347 + 0.378187i
\(545\) −3134.23 −0.246341
\(546\) 218.501 349.071i 0.0171263 0.0273606i
\(547\) 15260.5 1.19286 0.596430 0.802665i \(-0.296586\pi\)
0.596430 + 0.802665i \(0.296586\pi\)
\(548\) 2685.81 + 4651.96i 0.209365 + 0.362631i
\(549\) 4451.91 + 7710.93i 0.346089 + 0.599443i
\(550\) −944.390 + 1635.73i −0.0732162 + 0.126814i
\(551\) 8621.64 0.666595
\(552\) 1794.44 3108.05i 0.138363 0.239651i
\(553\) −550.540 + 953.563i −0.0423351 + 0.0733266i
\(554\) 1682.55 0.129033
\(555\) 140.800 243.873i 0.0107687 0.0186520i
\(556\) −2653.00 4595.13i −0.202360 0.350498i
\(557\) 5221.05 + 9043.12i 0.397169 + 0.687916i 0.993375 0.114915i \(-0.0366595\pi\)
−0.596207 + 0.802831i \(0.703326\pi\)
\(558\) −1625.29 −0.123304
\(559\) −1289.54 46.0341i −0.0975702 0.00348307i
\(560\) −5754.94 −0.434269
\(561\) −2808.53 4864.51i −0.211366 0.366096i
\(562\) −1999.79 3463.73i −0.150099 0.259980i
\(563\) −3572.63 + 6187.98i −0.267440 + 0.463219i −0.968200 0.250178i \(-0.919511\pi\)
0.700760 + 0.713397i \(0.252844\pi\)
\(564\) 9166.29 0.684344
\(565\) 11262.4 19507.0i 0.838604 1.45250i
\(566\) 466.475 807.958i 0.0346420 0.0600018i
\(567\) −1013.65 −0.0750783
\(568\) 530.083 918.131i 0.0391581 0.0678238i
\(569\) −2219.43 3844.17i −0.163521 0.283226i 0.772608 0.634883i \(-0.218952\pi\)
−0.936129 + 0.351657i \(0.885618\pi\)
\(570\) −1162.38 2013.30i −0.0854151 0.147943i
\(571\) 10117.3 0.741497 0.370748 0.928733i \(-0.379101\pi\)
0.370748 + 0.928733i \(0.379101\pi\)
\(572\) 3846.94 + 7248.62i 0.281204 + 0.529860i
\(573\) −9882.70 −0.720516
\(574\) 271.554 + 470.346i 0.0197464 + 0.0342018i
\(575\) −13499.2 23381.3i −0.979052 1.69577i
\(576\) −2950.79 + 5110.92i −0.213454 + 0.369714i
\(577\) 3105.60 0.224069 0.112035 0.993704i \(-0.464263\pi\)
0.112035 + 0.993704i \(0.464263\pi\)
\(578\) −63.8074 + 110.518i −0.00459176 + 0.00795316i
\(579\) −3630.62 + 6288.41i −0.260593 + 0.451360i
\(580\) −14834.5 −1.06202
\(581\) −914.081 + 1583.24i −0.0652711 + 0.113053i
\(582\) −613.390 1062.42i −0.0436870 0.0756682i
\(583\) −758.538 1313.83i −0.0538858 0.0933329i
\(584\) 812.769 0.0575901
\(585\) −11197.1 399.716i −0.791358 0.0282500i
\(586\) −3628.05 −0.255757
\(587\) −9831.16 17028.1i −0.691270 1.19731i −0.971422 0.237359i \(-0.923718\pi\)
0.280152 0.959956i \(-0.409615\pi\)
\(588\) 4508.43 + 7808.83i 0.316198 + 0.547671i
\(589\) −11157.7 + 19325.8i −0.780555 + 1.35196i
\(590\) −2272.95 −0.158603
\(591\) −7398.88 + 12815.2i −0.514974 + 0.891960i
\(592\) 127.513 220.859i 0.00885261 0.0153332i
\(593\) 6395.51 0.442888 0.221444 0.975173i \(-0.428923\pi\)
0.221444 + 0.975173i \(0.428923\pi\)
\(594\) −732.176 + 1268.17i −0.0505750 + 0.0875985i
\(595\) 3292.05 + 5702.00i 0.226825 + 0.392872i
\(596\) −7711.97 13357.5i −0.530025 0.918029i
\(597\) 15571.6 1.06751
\(598\) 2886.21 + 103.032i 0.197368 + 0.00704567i
\(599\) 8878.48 0.605618 0.302809 0.953051i \(-0.402076\pi\)
0.302809 + 0.953051i \(0.402076\pi\)
\(600\) 2453.12 + 4248.94i 0.166914 + 0.289103i
\(601\) −9550.29 16541.6i −0.648194 1.12270i −0.983554 0.180615i \(-0.942191\pi\)
0.335360 0.942090i \(-0.391142\pi\)
\(602\) 32.8215 56.8485i 0.00222210 0.00384879i
\(603\) 5706.26 0.385368
\(604\) 7039.63 12193.0i 0.474236 0.821401i
\(605\) −7374.16 + 12772.4i −0.495541 + 0.858302i
\(606\) −563.330 −0.0377619
\(607\) −8297.88 + 14372.4i −0.554861 + 0.961047i 0.443053 + 0.896495i \(0.353895\pi\)
−0.997914 + 0.0645522i \(0.979438\pi\)
\(608\) −3292.95 5703.56i −0.219650 0.380444i
\(609\) −1069.00 1851.57i −0.0711300 0.123201i
\(610\) 5178.97 0.343755
\(611\) 7000.98 + 13191.6i 0.463551 + 0.873447i
\(612\) 7125.21 0.470620
\(613\) −8234.58 14262.7i −0.542564 0.939748i −0.998756 0.0498668i \(-0.984120\pi\)
0.456192 0.889881i \(-0.349213\pi\)
\(614\) −791.505 1370.93i −0.0520237 0.0901077i
\(615\) −7472.59 + 12942.9i −0.489958 + 0.848631i
\(616\) −845.205 −0.0552829
\(617\) −5057.99 + 8760.69i −0.330027 + 0.571624i −0.982517 0.186174i \(-0.940391\pi\)
0.652489 + 0.757798i \(0.273725\pi\)
\(618\) 468.748 811.895i 0.0305110 0.0528466i
\(619\) 18854.8 1.22430 0.612148 0.790743i \(-0.290306\pi\)
0.612148 + 0.790743i \(0.290306\pi\)
\(620\) 19198.2 33252.2i 1.24357 2.15393i
\(621\) −10465.8 18127.3i −0.676292 1.17137i
\(622\) 730.247 + 1264.83i 0.0470743 + 0.0815352i
\(623\) 3905.86 0.251180
\(624\) 10256.3 + 366.132i 0.657984 + 0.0234888i
\(625\) −2730.82 −0.174773
\(626\) −78.5095 135.983i −0.00501258 0.00868204i
\(627\) 3338.26 + 5782.03i 0.212627 + 0.368281i
\(628\) −1550.50 + 2685.54i −0.0985215 + 0.170644i
\(629\) −291.769 −0.0184954
\(630\) 284.991 493.618i 0.0180227 0.0312162i
\(631\) −9473.12 + 16407.9i −0.597653 + 1.03517i 0.395514 + 0.918460i \(0.370567\pi\)
−0.993167 + 0.116705i \(0.962767\pi\)
\(632\) 1403.24 0.0883194
\(633\) 2514.17 4354.66i 0.157866 0.273432i
\(634\) 668.074 + 1157.14i 0.0418496 + 0.0724856i
\(635\) 23186.7 + 40160.5i 1.44903 + 2.50979i
\(636\) −1946.40 −0.121352
\(637\) −7794.62 + 12452.5i −0.484826 + 0.774545i
\(638\) −1048.95 −0.0650912
\(639\) −1026.63 1778.18i −0.0635571 0.110084i
\(640\) 7521.75 + 13028.1i 0.464568 + 0.804655i
\(641\) 11793.5 20426.9i 0.726698 1.25868i −0.231573 0.972818i \(-0.574387\pi\)
0.958271 0.285861i \(-0.0922795\pi\)
\(642\) 923.263 0.0567575
\(643\) 13576.5 23515.2i 0.832669 1.44222i −0.0632461 0.997998i \(-0.520145\pi\)
0.895915 0.444226i \(-0.146521\pi\)
\(644\) 2983.63 5167.79i 0.182564 0.316211i
\(645\) 1806.35 0.110272
\(646\) −1204.35 + 2085.99i −0.0733506 + 0.127047i
\(647\) −3428.36 5938.09i −0.208319 0.360820i 0.742866 0.669440i \(-0.233466\pi\)
−0.951185 + 0.308620i \(0.900133\pi\)
\(648\) 645.910 + 1118.75i 0.0391570 + 0.0678219i
\(649\) 6527.75 0.394817
\(650\) −2094.82 + 3346.62i −0.126408 + 0.201947i
\(651\) 5533.83 0.333161
\(652\) 3675.09 + 6365.44i 0.220748 + 0.382346i
\(653\) 4036.95 + 6992.20i 0.241926 + 0.419029i 0.961263 0.275633i \(-0.0888874\pi\)
−0.719337 + 0.694662i \(0.755554\pi\)
\(654\) −142.169 + 246.245i −0.00850041 + 0.0147231i
\(655\) −37960.9 −2.26451
\(656\) −6767.39 + 11721.5i −0.402778 + 0.697632i
\(657\) 787.061 1363.23i 0.0467370 0.0809508i
\(658\) −759.734 −0.0450114
\(659\) −2652.86 + 4594.89i −0.156815 + 0.271611i −0.933718 0.358008i \(-0.883456\pi\)
0.776904 + 0.629620i \(0.216789\pi\)
\(660\) −5743.84 9948.63i −0.338756 0.586742i
\(661\) −12924.2 22385.3i −0.760502 1.31723i −0.942592 0.333946i \(-0.891620\pi\)
0.182091 0.983282i \(-0.441714\pi\)
\(662\) −3373.75 −0.198073
\(663\) −5504.26 10371.4i −0.322425 0.607531i
\(664\) 2329.85 0.136168
\(665\) −3912.98 6777.48i −0.228179 0.395217i
\(666\) 12.6291 + 21.8743i 0.000734788 + 0.00127269i
\(667\) 7496.86 12984.9i 0.435202 0.753792i
\(668\) −28735.9 −1.66441
\(669\) −1951.89 + 3380.77i −0.112802 + 0.195379i
\(670\) 1659.55 2874.42i 0.0956923 0.165744i
\(671\) −14873.6 −0.855722
\(672\) −816.591 + 1414.38i −0.0468760 + 0.0811917i
\(673\) 7264.55 + 12582.6i 0.416089 + 0.720687i 0.995542 0.0943186i \(-0.0300673\pi\)
−0.579453 + 0.815005i \(0.696734\pi\)
\(674\) 1033.03 + 1789.26i 0.0590367 + 0.102255i
\(675\) 28615.0 1.63169
\(676\) 7495.72 + 15429.3i 0.426475 + 0.877860i
\(677\) 12058.1 0.684535 0.342267 0.939603i \(-0.388805\pi\)
0.342267 + 0.939603i \(0.388805\pi\)
\(678\) −1021.73 1769.68i −0.0578749 0.100242i
\(679\) −2064.89 3576.50i −0.116706 0.202140i
\(680\) 4195.46 7266.74i 0.236601 0.409804i
\(681\) −12764.4 −0.718255
\(682\) 1357.50 2351.26i 0.0762190 0.132015i
\(683\) −15014.4 + 26005.7i −0.841156 + 1.45693i 0.0477615 + 0.998859i \(0.484791\pi\)
−0.888918 + 0.458067i \(0.848542\pi\)
\(684\) −8469.13 −0.473429
\(685\) 6125.74 10610.1i 0.341682 0.591811i
\(686\) −782.611 1355.52i −0.0435572 0.0754433i
\(687\) −4282.75 7417.94i −0.237842 0.411954i
\(688\) 1635.89 0.0906505
\(689\) −1486.61 2801.15i −0.0821994 0.154884i
\(690\) −4042.94 −0.223061
\(691\) −224.848 389.448i −0.0123786 0.0214404i 0.859770 0.510682i \(-0.170607\pi\)
−0.872148 + 0.489241i \(0.837274\pi\)
\(692\) 5554.34 + 9620.40i 0.305122 + 0.528487i
\(693\) −818.471 + 1417.63i −0.0448646 + 0.0777077i
\(694\) 2307.10 0.126191
\(695\) −6050.90 + 10480.5i −0.330250 + 0.572010i
\(696\) −1362.36 + 2359.68i −0.0741955 + 0.128510i
\(697\) 15484.8 0.841506
\(698\) 11.0345 19.1123i 0.000598370 0.00103641i
\(699\) −6873.75 11905.7i −0.371944 0.644227i
\(700\) 4078.84 + 7064.75i 0.220236 + 0.381461i
\(701\) −26986.0 −1.45399 −0.726994 0.686644i \(-0.759083\pi\)
−0.726994 + 0.686644i \(0.759083\pi\)
\(702\) −1624.09 + 2594.60i −0.0873181 + 0.139497i
\(703\) 346.801 0.0186057
\(704\) −4929.23 8537.67i −0.263888 0.457068i
\(705\) −10453.1 18105.3i −0.558422 0.967215i
\(706\) 1985.65 3439.24i 0.105851 0.183339i
\(707\) −1896.37 −0.100877
\(708\) 4187.53 7253.01i 0.222284 0.385007i
\(709\) 4549.44 7879.85i 0.240984 0.417396i −0.720011 0.693963i \(-0.755863\pi\)
0.960995 + 0.276566i \(0.0891965\pi\)
\(710\) −1194.30 −0.0631285
\(711\) 1358.85 2353.60i 0.0716751 0.124145i
\(712\) −2488.85 4310.82i −0.131002 0.226903i
\(713\) 19404.2 + 33609.1i 1.01921 + 1.76532i
\(714\) 597.312 0.0313079
\(715\) 9930.53 15864.8i 0.519414 0.829802i
\(716\) −9118.62 −0.475948
\(717\) 11135.9 + 19287.9i 0.580025 + 1.00463i
\(718\) 1573.56 + 2725.48i 0.0817892 + 0.141663i
\(719\) 3146.78 5450.38i 0.163220 0.282705i −0.772802 0.634647i \(-0.781145\pi\)
0.936022 + 0.351942i \(0.114479\pi\)
\(720\) 14204.5 0.735235
\(721\) 1577.97 2733.13i 0.0815074 0.141175i
\(722\) −72.1476 + 124.963i −0.00371892 + 0.00644135i
\(723\) 19064.3 0.980648
\(724\) −4426.86 + 7667.54i −0.227242 + 0.393594i
\(725\) 10248.8 + 17751.4i 0.525006 + 0.909337i
\(726\) 668.987 + 1158.72i 0.0341989 + 0.0592343i
\(727\) 18070.7 0.921878 0.460939 0.887432i \(-0.347513\pi\)
0.460939 + 0.887432i \(0.347513\pi\)
\(728\) −1765.64 63.0298i −0.0898885 0.00320885i
\(729\) 17319.9 0.879944
\(730\) −457.800 792.934i −0.0232109 0.0402025i
\(731\) −935.790 1620.84i −0.0473481 0.0820093i
\(732\) −9541.37 + 16526.1i −0.481775 + 0.834459i
\(733\) 34771.5 1.75214 0.876068 0.482188i \(-0.160158\pi\)
0.876068 + 0.482188i \(0.160158\pi\)
\(734\) 877.803 1520.40i 0.0441421 0.0764563i
\(735\) 10282.7 17810.2i 0.516032 0.893794i
\(736\) −11453.4 −0.573613
\(737\) −4766.09 + 8255.10i −0.238210 + 0.412592i
\(738\) −670.256 1160.92i −0.0334315 0.0579051i
\(739\) −11815.7 20465.4i −0.588158 1.01872i −0.994474 0.104986i \(-0.966520\pi\)
0.406316 0.913733i \(-0.366813\pi\)
\(740\) −596.710 −0.0296425
\(741\) 6542.44 + 12327.6i 0.324349 + 0.611156i
\(742\) 161.324 0.00798167
\(743\) −16251.4 28148.3i −0.802431 1.38985i −0.918012 0.396553i \(-0.870206\pi\)
0.115581 0.993298i \(-0.463127\pi\)
\(744\) −3526.21 6107.58i −0.173760 0.300961i
\(745\) −17589.3 + 30465.5i −0.864995 + 1.49822i
\(746\) 4390.69 0.215489
\(747\) 2256.16 3907.78i 0.110507 0.191403i
\(748\) −5951.25 + 10307.9i −0.290908 + 0.503868i
\(749\) 3108.04 0.151622
\(750\) 965.435 1672.18i 0.0470036 0.0814126i
\(751\) −1010.43 1750.12i −0.0490960 0.0850368i 0.840433 0.541915i \(-0.182301\pi\)
−0.889529 + 0.456879i \(0.848967\pi\)
\(752\) −9466.65 16396.7i −0.459060 0.795115i
\(753\) −20710.5 −1.00230
\(754\) −2191.25 78.2235i −0.105836 0.00377816i
\(755\) −32111.6 −1.54790
\(756\) 3162.28 + 5477.23i 0.152131 + 0.263499i
\(757\) −6284.11 10884.4i −0.301717 0.522589i 0.674808 0.737993i \(-0.264226\pi\)
−0.976525 + 0.215404i \(0.930893\pi\)
\(758\) −1790.86 + 3101.87i −0.0858141 + 0.148634i
\(759\) 11611.0 0.555273
\(760\) −4986.78 + 8637.36i −0.238013 + 0.412250i
\(761\) 4352.40 7538.59i 0.207325 0.359098i −0.743546 0.668685i \(-0.766857\pi\)
0.950871 + 0.309587i \(0.100191\pi\)
\(762\) 4207.01 0.200005
\(763\) −478.593 + 828.948i −0.0227081 + 0.0393315i
\(764\) 10470.7 + 18135.8i 0.495832 + 0.858807i
\(765\) −8125.51 14073.8i −0.384024 0.665149i
\(766\) 3205.16 0.151184
\(767\) 13636.5 + 486.797i 0.641962 + 0.0229168i
\(768\) −11595.0 −0.544790
\(769\) 10957.9 + 18979.7i 0.513853 + 0.890020i 0.999871 + 0.0160706i \(0.00511566\pi\)
−0.486018 + 0.873949i \(0.661551\pi\)
\(770\) 476.070 + 824.578i 0.0222810 + 0.0385918i
\(771\) −3084.32 + 5342.19i −0.144071 + 0.249539i
\(772\) 15386.5 0.717322
\(773\) 11538.8 19985.7i 0.536896 0.929930i −0.462173 0.886790i \(-0.652930\pi\)
0.999069 0.0431408i \(-0.0137364\pi\)
\(774\) −81.0108 + 140.315i −0.00376211 + 0.00651616i
\(775\) −53054.0 −2.45904
\(776\) −2631.54 + 4557.96i −0.121736 + 0.210852i
\(777\) −43.0001 74.4783i −0.00198535 0.00343873i
\(778\) 1925.98 + 3335.90i 0.0887530 + 0.153725i
\(779\) −18405.5 −0.846528
\(780\)