# Properties

 Label 128.4.e.b Level 128 Weight 4 Character orbit 128.e Analytic conductor 7.552 Analytic rank 0 Dimension 10 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$128 = 2^{7}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 128.e (of order $$4$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.55224448073$$ Analytic rank: $$0$$ Dimension: $$10$$ Relative dimension: $$5$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{10} - \cdots)$$ Defining polynomial: $$x^{10} - 2 x^{9} - x^{8} + 6 x^{7} + 14 x^{6} - 80 x^{5} + 56 x^{4} + 96 x^{3} - 64 x^{2} - 512 x + 1024$$ Coefficient ring: $$\Z[a_1, \ldots, a_{9}]$$ Coefficient ring index: $$2^{20}$$ Twist minimal: no (minimal twist has level 16) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{9}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{5} q^{3} -\beta_{3} q^{5} + ( -3 \beta_{1} + \beta_{4} ) q^{7} + ( 5 \beta_{1} - \beta_{2} - \beta_{4} + \beta_{5} + \beta_{9} ) q^{9} +O(q^{10})$$ $$q + \beta_{5} q^{3} -\beta_{3} q^{5} + ( -3 \beta_{1} + \beta_{4} ) q^{7} + ( 5 \beta_{1} - \beta_{2} - \beta_{4} + \beta_{5} + \beta_{9} ) q^{9} + ( -1 + \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{7} + \beta_{9} ) q^{11} + ( \beta_{4} - 2 \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{13} + ( -13 - 2 \beta_{3} + 2 \beta_{6} - 2 \beta_{7} - \beta_{8} ) q^{15} + ( -4 + 5 \beta_{2} - 2 \beta_{3} + 5 \beta_{5} + 2 \beta_{6} + \beta_{7} - 3 \beta_{8} ) q^{17} + ( 1 + \beta_{1} + 2 \beta_{4} + \beta_{5} + 6 \beta_{6} - \beta_{7} - 2 \beta_{8} - \beta_{9} ) q^{19} + ( -8 + 8 \beta_{1} + 10 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} - \beta_{7} - 3 \beta_{8} + \beta_{9} ) q^{21} + ( 23 \beta_{1} - 4 \beta_{2} + 6 \beta_{3} + \beta_{4} + 4 \beta_{5} + 6 \beta_{6} + 2 \beta_{9} ) q^{23} + ( -\beta_{1} + 10 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 10 \beta_{5} - 2 \beta_{6} + 2 \beta_{9} ) q^{25} + ( -19 + 19 \beta_{1} - 6 \beta_{3} + 2 \beta_{4} - \beta_{7} + 2 \beta_{8} + \beta_{9} ) q^{27} + ( 16 + 16 \beta_{1} - 2 \beta_{4} + 20 \beta_{5} + \beta_{6} + 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} ) q^{29} + ( 38 + 4 \beta_{2} + 6 \beta_{3} + 4 \beta_{5} - 6 \beta_{6} - 2 \beta_{7} ) q^{31} + ( 4 - 15 \beta_{2} - 4 \beta_{3} - 15 \beta_{5} + 4 \beta_{6} + \beta_{7} + \beta_{8} ) q^{33} + ( -46 - 46 \beta_{1} + 2 \beta_{4} - 2 \beta_{5} - 8 \beta_{6} - 2 \beta_{8} ) q^{35} + ( 8 - 8 \beta_{1} - 30 \beta_{2} + 3 \beta_{3} + \beta_{4} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{37} + ( -71 \beta_{1} - 4 \beta_{2} - 8 \beta_{3} - 3 \beta_{4} + 4 \beta_{5} - 8 \beta_{6} ) q^{39} + ( -8 \beta_{1} - 24 \beta_{2} - 2 \beta_{3} + 24 \beta_{5} - 2 \beta_{6} - 4 \beta_{9} ) q^{41} + ( 84 - 84 \beta_{1} + 3 \beta_{2} + 8 \beta_{3} + 4 \beta_{7} - 4 \beta_{9} ) q^{43} + ( -8 - 8 \beta_{1} - \beta_{4} - 46 \beta_{5} - 5 \beta_{6} - 5 \beta_{7} + \beta_{8} - 5 \beta_{9} ) q^{45} + ( -98 - 6 \beta_{3} + 6 \beta_{6} + 10 \beta_{7} + 4 \beta_{8} ) q^{47} + ( 7 + 26 \beta_{2} + 12 \beta_{3} + 26 \beta_{5} - 12 \beta_{6} - 6 \beta_{7} + 10 \beta_{8} ) q^{49} + ( 153 + 153 \beta_{1} - 12 \beta_{4} - 2 \beta_{5} - 6 \beta_{6} + 5 \beta_{7} + 12 \beta_{8} + 5 \beta_{9} ) q^{51} + ( 32 - 32 \beta_{1} + 42 \beta_{2} + 7 \beta_{3} + 13 \beta_{4} + 7 \beta_{7} + 13 \beta_{8} - 7 \beta_{9} ) q^{53} + ( 157 \beta_{1} + 28 \beta_{2} - 12 \beta_{3} - 3 \beta_{4} - 28 \beta_{5} - 12 \beta_{6} - 12 \beta_{9} ) q^{55} + ( -4 \beta_{1} + 25 \beta_{2} + 16 \beta_{3} - 7 \beta_{4} - 25 \beta_{5} + 16 \beta_{6} - 9 \beta_{9} ) q^{57} + ( -174 + 174 \beta_{1} - \beta_{2} - 14 \beta_{4} + 4 \beta_{7} - 14 \beta_{8} - 4 \beta_{9} ) q^{59} + ( -96 - 96 \beta_{1} + 9 \beta_{4} + 30 \beta_{5} - 3 \beta_{6} - 11 \beta_{7} - 9 \beta_{8} - 11 \beta_{9} ) q^{61} + ( 271 - 32 \beta_{2} - 6 \beta_{3} - 32 \beta_{5} + 6 \beta_{6} + 10 \beta_{7} - \beta_{8} ) q^{63} + ( -22 - 40 \beta_{2} + 26 \beta_{3} - 40 \beta_{5} - 26 \beta_{6} - 4 \beta_{7} ) q^{65} + ( -189 - 189 \beta_{1} - 12 \beta_{4} - 11 \beta_{5} - 2 \beta_{6} - \beta_{7} + 12 \beta_{8} - \beta_{9} ) q^{67} + ( -48 + 48 \beta_{1} - 50 \beta_{2} + 6 \beta_{3} - \beta_{4} + 5 \beta_{7} - \beta_{8} - 5 \beta_{9} ) q^{69} + ( -337 \beta_{1} + 28 \beta_{2} + 6 \beta_{3} - 7 \beta_{4} - 28 \beta_{5} + 6 \beta_{6} + 2 \beta_{9} ) q^{71} + ( -50 \beta_{1} - 31 \beta_{2} + 12 \beta_{3} + 17 \beta_{4} + 31 \beta_{5} + 12 \beta_{6} - \beta_{9} ) q^{73} + ( 288 - 288 \beta_{1} + 9 \beta_{2} - 28 \beta_{3} + 2 \beta_{4} + 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} ) q^{75} + ( 32 + 32 \beta_{1} - 15 \beta_{4} - 18 \beta_{5} + 2 \beta_{6} + 5 \beta_{7} + 15 \beta_{8} + 5 \beta_{9} ) q^{77} + ( -428 + 4 \beta_{2} + 32 \beta_{3} + 4 \beta_{5} - 32 \beta_{6} - 8 \beta_{7} + 4 \beta_{8} ) q^{79} + ( 35 + 9 \beta_{2} - 24 \beta_{3} + 9 \beta_{5} + 24 \beta_{6} + 9 \beta_{7} + 9 \beta_{8} ) q^{81} + ( 260 + 260 \beta_{1} + 22 \beta_{4} - 11 \beta_{5} - 28 \beta_{6} - 2 \beta_{7} - 22 \beta_{8} - 2 \beta_{9} ) q^{83} + ( 8 - 8 \beta_{1} - 14 \beta_{2} + 10 \beta_{3} - 7 \beta_{4} - 17 \beta_{7} - 7 \beta_{8} + 17 \beta_{9} ) q^{85} + ( 575 \beta_{1} - 76 \beta_{2} - 10 \beta_{3} - 7 \beta_{4} + 76 \beta_{5} - 10 \beta_{6} + 18 \beta_{9} ) q^{87} + ( 18 \beta_{1} + 15 \beta_{2} - 52 \beta_{3} - \beta_{4} - 15 \beta_{5} - 52 \beta_{6} + \beta_{9} ) q^{89} + ( -320 + 320 \beta_{1} + 2 \beta_{2} + 36 \beta_{3} + 34 \beta_{4} + 2 \beta_{7} + 34 \beta_{8} - 2 \beta_{9} ) q^{91} + ( 216 + 216 \beta_{1} - 10 \beta_{4} + 20 \beta_{5} - 8 \beta_{6} + 14 \beta_{7} + 10 \beta_{8} + 14 \beta_{9} ) q^{93} + ( 641 + 104 \beta_{2} - 24 \beta_{3} + 104 \beta_{5} + 24 \beta_{6} - 8 \beta_{7} + 3 \beta_{8} ) q^{95} + ( -36 + 25 \beta_{2} - 58 \beta_{3} + 25 \beta_{5} + 58 \beta_{6} - 3 \beta_{7} - 15 \beta_{8} ) q^{97} + ( -518 - 518 \beta_{1} + 22 \beta_{4} + 21 \beta_{5} + 64 \beta_{6} + 4 \beta_{7} - 22 \beta_{8} + 4 \beta_{9} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$10q + 2q^{3} + 2q^{5} + O(q^{10})$$ $$10q + 2q^{3} + 2q^{5} - 18q^{11} + 2q^{13} - 124q^{15} - 4q^{17} + 26q^{19} - 52q^{21} - 184q^{27} + 202q^{29} + 368q^{31} - 4q^{33} - 476q^{35} + 10q^{37} + 838q^{43} - 194q^{45} - 944q^{47} + 94q^{49} + 1500q^{51} + 378q^{53} - 1706q^{59} - 910q^{61} + 2628q^{63} - 492q^{65} - 1942q^{67} - 580q^{69} + 2954q^{75} + 268q^{77} - 4416q^{79} + 482q^{81} + 2562q^{83} + 12q^{85} - 3332q^{91} + 2192q^{93} + 6900q^{95} - 4q^{97} - 4958q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{10} - 2 x^{9} - x^{8} + 6 x^{7} + 14 x^{6} - 80 x^{5} + 56 x^{4} + 96 x^{3} - 64 x^{2} - 512 x + 1024$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-\nu^{9} + 14 \nu^{8} - 7 \nu^{7} - 82 \nu^{6} + 170 \nu^{5} + 120 \nu^{4} - 536 \nu^{3} - 384 \nu^{2} + 2752 \nu - 3072$$$$)/1280$$ $$\beta_{2}$$ $$=$$ $$($$$$-3 \nu^{9} + 2 \nu^{8} - 101 \nu^{7} + 114 \nu^{6} - 210 \nu^{5} + 120 \nu^{4} - 8 \nu^{3} + 3008 \nu^{2} - 3264 \nu + 7424$$$$)/1280$$ $$\beta_{3}$$ $$=$$ $$($$$$3 \nu^{9} - 122 \nu^{8} + 341 \nu^{7} - 634 \nu^{6} + 130 \nu^{5} + 120 \nu^{4} + 3848 \nu^{3} - 9728 \nu^{2} + 16064 \nu - 2304$$$$)/1280$$ $$\beta_{4}$$ $$=$$ $$($$$$7 \nu^{9} - 18 \nu^{8} + 49 \nu^{7} + 174 \nu^{6} - 870 \nu^{5} + 1240 \nu^{4} + 2152 \nu^{3} - 5632 \nu^{2} - 15424 \nu + 31744$$$$)/1280$$ $$\beta_{5}$$ $$=$$ $$($$$$-17 \nu^{9} + 38 \nu^{8} - 39 \nu^{7} + 86 \nu^{6} + 90 \nu^{5} + 520 \nu^{4} - 792 \nu^{3} + 2752 \nu^{2} - 1856 \nu - 4864$$$$)/1280$$ $$\beta_{6}$$ $$=$$ $$($$$$-37 \nu^{9} + 198 \nu^{8} - 419 \nu^{7} + 166 \nu^{6} + 50 \nu^{5} + 1560 \nu^{4} - 7992 \nu^{3} + 11392 \nu^{2} - 6976 \nu + 256$$$$)/1280$$ $$\beta_{7}$$ $$=$$ $$($$$$-\nu^{9} + 2 \nu^{8} + \nu^{7} - 6 \nu^{6} - 14 \nu^{5} + 80 \nu^{4} - 56 \nu^{3} - 96 \nu^{2} + 320 \nu + 416$$$$)/32$$ $$\beta_{8}$$ $$=$$ $$($$$$-3 \nu^{9} + 10 \nu^{8} + 3 \nu^{7} - 6 \nu^{6} - 90 \nu^{5} + 184 \nu^{4} - 56 \nu^{3} - 128 \nu^{2} - 896 \nu + 1728$$$$)/64$$ $$\beta_{9}$$ $$=$$ $$($$$$39 \nu^{9} - 66 \nu^{8} - 47 \nu^{7} + 414 \nu^{6} - 294 \nu^{5} - 1288 \nu^{4} + 1704 \nu^{3} + 2944 \nu^{2} - 11072 \nu + 11264$$$$)/256$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta_{1} + 3$$$$)/16$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{9} + \beta_{8} + \beta_{6} + 5 \beta_{5} - 2 \beta_{4} + 3 \beta_{3} + \beta_{2} + 5 \beta_{1} + 9$$$$)/16$$ $$\nu^{3}$$ $$=$$ $$($$$$2 \beta_{8} - \beta_{7} - 7 \beta_{6} + 5 \beta_{5} - \beta_{4} - 3 \beta_{3} + 15 \beta_{2} + 33 \beta_{1} - 9$$$$)/16$$ $$\nu^{4}$$ $$=$$ $$($$$$3 \beta_{9} - \beta_{8} + 4 \beta_{7} + 3 \beta_{6} + 23 \beta_{5} + 6 \beta_{4} + 9 \beta_{3} + 3 \beta_{2} + 43 \beta_{1} - 117$$$$)/16$$ $$\nu^{5}$$ $$=$$ $$($$$$-6 \beta_{8} - 7 \beta_{7} - \beta_{6} + 43 \beta_{5} + 13 \beta_{4} + 3 \beta_{3} - 7 \beta_{2} + 67 \beta_{1} + 301$$$$)/16$$ $$\nu^{6}$$ $$=$$ $$($$$$-3 \beta_{9} - 15 \beta_{8} + 28 \beta_{7} - 27 \beta_{6} + 17 \beta_{5} + 2 \beta_{4} - 49 \beta_{3} - 43 \beta_{2} - 99 \beta_{1} + 117$$$$)/16$$ $$\nu^{7}$$ $$=$$ $$($$$$24 \beta_{9} + 22 \beta_{8} + 15 \beta_{7} + 33 \beta_{6} + 133 \beta_{5} - 45 \beta_{4} + 61 \beta_{3} - 233 \beta_{2} - 155 \beta_{1} + 859$$$$)/16$$ $$\nu^{8}$$ $$=$$ $$($$$$11 \beta_{9} + 119 \beta_{8} - 4 \beta_{7} - 197 \beta_{6} - 17 \beta_{5} - 122 \beta_{4} - 191 \beta_{3} + 91 \beta_{2} + 1043 \beta_{1} + 987$$$$)/16$$ $$\nu^{9}$$ $$=$$ $$($$$$208 \beta_{9} + 146 \beta_{8} + 121 \beta_{7} + 31 \beta_{6} + 155 \beta_{5} - 75 \beta_{4} + 211 \beta_{3} - 71 \beta_{2} + 3019 \beta_{1} - 4187$$$$)/16$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/128\mathbb{Z}\right)^\times$$.

 $$n$$ $$5$$ $$127$$ $$\chi(n)$$ $$-\beta_{1}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
33.1
 1.28199 + 1.53509i 0.932438 − 1.76934i −1.62580 + 1.16481i −1.56339 − 1.24732i 1.97476 + 0.316760i 1.28199 − 1.53509i 0.932438 + 1.76934i −1.62580 − 1.16481i −1.56339 + 1.24732i 1.97476 − 0.316760i
0 −5.49618 5.49618i 0 4.66372 4.66372i 0 24.8965i 0 33.4160i 0
33.2 0 −1.98356 1.98356i 0 0.596848 0.596848i 0 29.0828i 0 19.1310i 0
33.3 0 −0.756776 0.756776i 0 −8.22587 + 8.22587i 0 2.67171i 0 25.8546i 0
33.4 0 3.27139 + 3.27139i 0 12.6449 12.6449i 0 13.8754i 0 5.59607i 0
33.5 0 5.96513 + 5.96513i 0 −8.67959 + 8.67959i 0 1.63924i 0 44.1656i 0
97.1 0 −5.49618 + 5.49618i 0 4.66372 + 4.66372i 0 24.8965i 0 33.4160i 0
97.2 0 −1.98356 + 1.98356i 0 0.596848 + 0.596848i 0 29.0828i 0 19.1310i 0
97.3 0 −0.756776 + 0.756776i 0 −8.22587 8.22587i 0 2.67171i 0 25.8546i 0
97.4 0 3.27139 3.27139i 0 12.6449 + 12.6449i 0 13.8754i 0 5.59607i 0
97.5 0 5.96513 5.96513i 0 −8.67959 8.67959i 0 1.63924i 0 44.1656i 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 97.5 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 128.4.e.b 10
4.b odd 2 1 128.4.e.a 10
8.b even 2 1 16.4.e.a 10
8.d odd 2 1 64.4.e.a 10
16.e even 4 1 16.4.e.a 10
16.e even 4 1 inner 128.4.e.b 10
16.f odd 4 1 64.4.e.a 10
16.f odd 4 1 128.4.e.a 10
24.f even 2 1 576.4.k.a 10
24.h odd 2 1 144.4.k.a 10
32.g even 8 2 1024.4.a.n 10
32.g even 8 2 1024.4.b.j 10
32.h odd 8 2 1024.4.a.m 10
32.h odd 8 2 1024.4.b.k 10
48.i odd 4 1 144.4.k.a 10
48.k even 4 1 576.4.k.a 10

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
16.4.e.a 10 8.b even 2 1
16.4.e.a 10 16.e even 4 1
64.4.e.a 10 8.d odd 2 1
64.4.e.a 10 16.f odd 4 1
128.4.e.a 10 4.b odd 2 1
128.4.e.a 10 16.f odd 4 1
128.4.e.b 10 1.a even 1 1 trivial
128.4.e.b 10 16.e even 4 1 inner
144.4.k.a 10 24.h odd 2 1
144.4.k.a 10 48.i odd 4 1
576.4.k.a 10 24.f even 2 1
576.4.k.a 10 48.k even 4 1
1024.4.a.m 10 32.h odd 8 2
1024.4.a.n 10 32.g even 8 2
1024.4.b.j 10 32.g even 8 2
1024.4.b.k 10 32.h odd 8 2

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{10} - \cdots$$ acting on $$S_{4}^{\mathrm{new}}(128, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 - 2 T + 2 T^{2} + 42 T^{3} - 571 T^{4} - 760 T^{5} + 3544 T^{6} - 66792 T^{7} + 57874 T^{8} + 3046228 T^{9} - 6701044 T^{10} + 82248156 T^{11} + 42190146 T^{12} - 1314666936 T^{13} + 1883426904 T^{14} - 10905169320 T^{15} - 221217099219 T^{16} + 439334834526 T^{17} + 564859072962 T^{18} - 15251194969974 T^{19} + 205891132094649 T^{20}$$
$5$ $$1 - 2 T + 2 T^{2} + 966 T^{3} - 13723 T^{4} - 18040 T^{5} + 530104 T^{6} + 11981288 T^{7} - 28535006 T^{8} - 2301854348 T^{9} + 23672040908 T^{10} - 287731793500 T^{11} - 445859468750 T^{12} + 23400953125000 T^{13} + 129419921875000 T^{14} - 550537109375000 T^{15} - 52349090576171875 T^{16} + 460624694824218750 T^{17} + 119209289550781250 T^{18} - 14901161193847656250 T^{19} +$$$$93\!\cdots\!25$$$$T^{20}$$
$7$ $$1 - 1762 T^{2} + 1539965 T^{4} - 932087576 T^{6} + 440869947922 T^{8} - 168121217547916 T^{10} + 51867908503075378 T^{12} - 12901291835899914776 T^{14} +$$$$25\!\cdots\!85$$$$T^{16} -$$$$33\!\cdots\!62$$$$T^{18} +$$$$22\!\cdots\!49$$$$T^{20}$$
$11$ $$1 + 18 T + 162 T^{2} + 122934 T^{3} + 4077397 T^{4} - 79597000 T^{5} + 5463099864 T^{6} + 313798751208 T^{7} - 6887886337838 T^{8} - 101615185776500 T^{9} + 18755914132083020 T^{10} - 135249812268521500 T^{11} - 12202310808546625118 T^{12} +$$$$73\!\cdots\!28$$$$T^{13} +$$$$17\!\cdots\!44$$$$T^{14} -$$$$33\!\cdots\!00$$$$T^{15} +$$$$22\!\cdots\!57$$$$T^{16} +$$$$90\!\cdots\!74$$$$T^{17} +$$$$15\!\cdots\!42$$$$T^{18} +$$$$23\!\cdots\!78$$$$T^{19} +$$$$17\!\cdots\!01$$$$T^{20}$$
$13$ $$1 - 2 T + 2 T^{2} + 45206 T^{3} - 2401451 T^{4} - 29395960 T^{5} + 1085386040 T^{6} + 384228102440 T^{7} - 9400034983966 T^{8} - 1531455561616908 T^{9} + 23489689415409228 T^{10} - 3364607868872346876 T^{11} - 45372173460921944494 T^{12} +$$$$40\!\cdots\!20$$$$T^{13} +$$$$25\!\cdots\!40$$$$T^{14} -$$$$15\!\cdots\!20$$$$T^{15} -$$$$27\!\cdots\!79$$$$T^{16} +$$$$11\!\cdots\!78$$$$T^{17} +$$$$10\!\cdots\!22$$$$T^{18} -$$$$23\!\cdots\!34$$$$T^{19} +$$$$26\!\cdots\!49$$$$T^{20}$$
$17$ $$( 1 + 2 T + 12653 T^{2} + 102520 T^{3} + 98460610 T^{4} + 354493580 T^{5} + 483736976930 T^{6} + 2474583573880 T^{7} + 1500492401316541 T^{8} + 1165244474459522 T^{9} + 2862423051509815793 T^{10} )^{2}$$
$19$ $$1 - 26 T + 338 T^{2} + 339906 T^{3} - 64153371 T^{4} - 2461461784 T^{5} + 143449890200 T^{6} - 36783398837960 T^{7} + 1011857007777554 T^{8} + 259766590630759364 T^{9} - 7366645907488092948 T^{10} +$$$$17\!\cdots\!76$$$$T^{11} +$$$$47\!\cdots\!74$$$$T^{12} -$$$$11\!\cdots\!40$$$$T^{13} +$$$$31\!\cdots\!00$$$$T^{14} -$$$$37\!\cdots\!16$$$$T^{15} -$$$$66\!\cdots\!11$$$$T^{16} +$$$$24\!\cdots\!14$$$$T^{17} +$$$$16\!\cdots\!98$$$$T^{18} -$$$$87\!\cdots\!14$$$$T^{19} +$$$$23\!\cdots\!01$$$$T^{20}$$
$23$ $$1 - 76386 T^{2} + 2913757597 T^{4} - 73253961622040 T^{6} + 1342371312768300946 T^{8} -$$$$18\!\cdots\!84$$$$T^{10} +$$$$19\!\cdots\!94$$$$T^{12} -$$$$16\!\cdots\!40$$$$T^{14} +$$$$94\!\cdots\!93$$$$T^{16} -$$$$36\!\cdots\!26$$$$T^{18} +$$$$71\!\cdots\!49$$$$T^{20}$$
$29$ $$1 - 202 T + 20402 T^{2} + 1177934 T^{3} + 398569397 T^{4} - 239164019416 T^{5} + 40873283338616 T^{6} - 2529271278095288 T^{7} + 194871598558001506 T^{8} -$$$$12\!\cdots\!32$$$$T^{9} +$$$$30\!\cdots\!36$$$$T^{10} -$$$$30\!\cdots\!48$$$$T^{11} +$$$$11\!\cdots\!26$$$$T^{12} -$$$$36\!\cdots\!72$$$$T^{13} +$$$$14\!\cdots\!56$$$$T^{14} -$$$$20\!\cdots\!84$$$$T^{15} +$$$$83\!\cdots\!17$$$$T^{16} +$$$$60\!\cdots\!86$$$$T^{17} +$$$$25\!\cdots\!62$$$$T^{18} -$$$$61\!\cdots\!18$$$$T^{19} +$$$$74\!\cdots\!01$$$$T^{20}$$
$31$ $$( 1 - 184 T + 134043 T^{2} - 19809056 T^{3} + 7638677322 T^{4} - 852982867024 T^{5} + 227563836099702 T^{6} - 17580610117135136 T^{7} + 3544046273282822853 T^{8} -$$$$14\!\cdots\!24$$$$T^{9} +$$$$23\!\cdots\!51$$$$T^{10} )^{2}$$
$37$ $$1 - 10 T + 50 T^{2} - 1972962 T^{3} + 1630465317 T^{4} + 153991562664 T^{5} + 324850634232 T^{6} + 5252842710654600 T^{7} + 3474549392106364962 T^{8} - 27985624577691139772 T^{9} +$$$$10\!\cdots\!24$$$$T^{10} -$$$$14\!\cdots\!16$$$$T^{11} +$$$$89\!\cdots\!58$$$$T^{12} +$$$$68\!\cdots\!00$$$$T^{13} +$$$$21\!\cdots\!92$$$$T^{14} +$$$$51\!\cdots\!52$$$$T^{15} +$$$$27\!\cdots\!93$$$$T^{16} -$$$$16\!\cdots\!94$$$$T^{17} +$$$$21\!\cdots\!50$$$$T^{18} -$$$$21\!\cdots\!30$$$$T^{19} +$$$$11\!\cdots\!49$$$$T^{20}$$
$41$ $$1 - 441018 T^{2} + 97166156061 T^{4} - 13934678680622904 T^{6} +$$$$14\!\cdots\!14$$$$T^{8} -$$$$11\!\cdots\!88$$$$T^{10} +$$$$68\!\cdots\!74$$$$T^{12} -$$$$31\!\cdots\!24$$$$T^{14} +$$$$10\!\cdots\!81$$$$T^{16} -$$$$22\!\cdots\!98$$$$T^{18} +$$$$24\!\cdots\!01$$$$T^{20}$$
$43$ $$1 - 838 T + 351122 T^{2} - 132133650 T^{3} + 56398378005 T^{4} - 20936462157416 T^{5} + 6471694737204248 T^{6} - 1952595983380873720 T^{7} +$$$$59\!\cdots\!10$$$$T^{8} -$$$$17\!\cdots\!68$$$$T^{9} +$$$$49\!\cdots\!52$$$$T^{10} -$$$$13\!\cdots\!76$$$$T^{11} +$$$$37\!\cdots\!90$$$$T^{12} -$$$$98\!\cdots\!60$$$$T^{13} +$$$$25\!\cdots\!48$$$$T^{14} -$$$$66\!\cdots\!12$$$$T^{15} +$$$$14\!\cdots\!45$$$$T^{16} -$$$$26\!\cdots\!50$$$$T^{17} +$$$$56\!\cdots\!22$$$$T^{18} -$$$$10\!\cdots\!66$$$$T^{19} +$$$$10\!\cdots\!49$$$$T^{20}$$
$47$ $$( 1 + 472 T + 462219 T^{2} + 171516064 T^{3} + 90105579914 T^{4} + 25593405310224 T^{5} + 9355031623411222 T^{6} + 1848808586238545056 T^{7} +$$$$51\!\cdots\!73$$$$T^{8} +$$$$54\!\cdots\!52$$$$T^{9} +$$$$12\!\cdots\!43$$$$T^{10} )^{2}$$
$53$ $$1 - 378 T + 71442 T^{2} + 52753550 T^{3} + 3016286341 T^{4} + 526686651752 T^{5} + 976891435665272 T^{6} + 1674349213754452168 T^{7} - 1581505854923305054 T^{8} +$$$$14\!\cdots\!20$$$$T^{9} +$$$$29\!\cdots\!08$$$$T^{10} +$$$$22\!\cdots\!40$$$$T^{11} -$$$$35\!\cdots\!66$$$$T^{12} +$$$$55\!\cdots\!44$$$$T^{13} +$$$$47\!\cdots\!52$$$$T^{14} +$$$$38\!\cdots\!64$$$$T^{15} +$$$$32\!\cdots\!49$$$$T^{16} +$$$$85\!\cdots\!50$$$$T^{17} +$$$$17\!\cdots\!02$$$$T^{18} -$$$$13\!\cdots\!86$$$$T^{19} +$$$$53\!\cdots\!49$$$$T^{20}$$
$59$ $$1 + 1706 T + 1455218 T^{2} + 989315358 T^{3} + 555128806581 T^{4} + 232658117164632 T^{5} + 78453755015006616 T^{6} + 20092577710244830152 T^{7} +$$$$57\!\cdots\!98$$$$T^{8} -$$$$22\!\cdots\!08$$$$T^{9} -$$$$12\!\cdots\!80$$$$T^{10} -$$$$45\!\cdots\!32$$$$T^{11} +$$$$24\!\cdots\!18$$$$T^{12} +$$$$17\!\cdots\!28$$$$T^{13} +$$$$13\!\cdots\!96$$$$T^{14} +$$$$85\!\cdots\!68$$$$T^{15} +$$$$41\!\cdots\!01$$$$T^{16} +$$$$15\!\cdots\!22$$$$T^{17} +$$$$46\!\cdots\!98$$$$T^{18} +$$$$11\!\cdots\!14$$$$T^{19} +$$$$13\!\cdots\!01$$$$T^{20}$$
$61$ $$1 + 910 T + 414050 T^{2} - 45940410 T^{3} + 20471098485 T^{4} + 72823214590920 T^{5} + 58848327585507000 T^{6} + 6001380717052735080 T^{7} +$$$$59\!\cdots\!50$$$$T^{8} +$$$$32\!\cdots\!00$$$$T^{9} +$$$$38\!\cdots\!00$$$$T^{10} +$$$$73\!\cdots\!00$$$$T^{11} +$$$$30\!\cdots\!50$$$$T^{12} +$$$$70\!\cdots\!80$$$$T^{13} +$$$$15\!\cdots\!00$$$$T^{14} +$$$$43\!\cdots\!20$$$$T^{15} +$$$$27\!\cdots\!85$$$$T^{16} -$$$$14\!\cdots\!10$$$$T^{17} +$$$$29\!\cdots\!50$$$$T^{18} +$$$$14\!\cdots\!10$$$$T^{19} +$$$$36\!\cdots\!01$$$$T^{20}$$
$67$ $$1 + 1942 T + 1885682 T^{2} + 1530965298 T^{3} + 1338066168261 T^{4} + 1068751594464168 T^{5} + 724275679990789656 T^{6} +$$$$46\!\cdots\!12$$$$T^{7} +$$$$29\!\cdots\!06$$$$T^{8} +$$$$17\!\cdots\!64$$$$T^{9} +$$$$97\!\cdots\!68$$$$T^{10} +$$$$52\!\cdots\!32$$$$T^{11} +$$$$26\!\cdots\!14$$$$T^{12} +$$$$12\!\cdots\!64$$$$T^{13} +$$$$59\!\cdots\!16$$$$T^{14} +$$$$26\!\cdots\!24$$$$T^{15} +$$$$99\!\cdots\!49$$$$T^{16} +$$$$34\!\cdots\!66$$$$T^{17} +$$$$12\!\cdots\!22$$$$T^{18} +$$$$39\!\cdots\!66$$$$T^{19} +$$$$60\!\cdots\!49$$$$T^{20}$$
$71$ $$1 - 2500418 T^{2} + 3072516920573 T^{4} - 2420243241413642648 T^{6} +$$$$13\!\cdots\!66$$$$T^{8} -$$$$55\!\cdots\!32$$$$T^{10} +$$$$17\!\cdots\!86$$$$T^{12} -$$$$39\!\cdots\!68$$$$T^{14} +$$$$64\!\cdots\!53$$$$T^{16} -$$$$67\!\cdots\!58$$$$T^{18} +$$$$34\!\cdots\!01$$$$T^{20}$$
$73$ $$1 - 3134282 T^{2} + 4627160201821 T^{4} - 4242124717558516472 T^{6} +$$$$26\!\cdots\!74$$$$T^{8} -$$$$12\!\cdots\!92$$$$T^{10} +$$$$40\!\cdots\!86$$$$T^{12} -$$$$97\!\cdots\!12$$$$T^{14} +$$$$16\!\cdots\!49$$$$T^{16} -$$$$16\!\cdots\!62$$$$T^{18} +$$$$79\!\cdots\!49$$$$T^{20}$$
$79$ $$( 1 + 2208 T + 3816107 T^{2} + 4320867712 T^{3} + 4245684014154 T^{4} + 3176789940661184 T^{5} + 2093287800654474006 T^{6} +$$$$10\!\cdots\!52$$$$T^{7} +$$$$45\!\cdots\!33$$$$T^{8} +$$$$13\!\cdots\!28$$$$T^{9} +$$$$29\!\cdots\!99$$$$T^{10} )^{2}$$
$83$ $$1 - 2562 T + 3281922 T^{2} - 2891460918 T^{3} + 1934799974629 T^{4} - 1191348439341176 T^{5} + 882645219418437336 T^{6} -$$$$79\!\cdots\!28$$$$T^{7} +$$$$89\!\cdots\!74$$$$T^{8} -$$$$97\!\cdots\!88$$$$T^{9} +$$$$82\!\cdots\!76$$$$T^{10} -$$$$55\!\cdots\!56$$$$T^{11} +$$$$29\!\cdots\!06$$$$T^{12} -$$$$14\!\cdots\!84$$$$T^{13} +$$$$94\!\cdots\!96$$$$T^{14} -$$$$72\!\cdots\!32$$$$T^{15} +$$$$67\!\cdots\!61$$$$T^{16} -$$$$57\!\cdots\!94$$$$T^{17} +$$$$37\!\cdots\!62$$$$T^{18} -$$$$16\!\cdots\!74$$$$T^{19} +$$$$37\!\cdots\!49$$$$T^{20}$$
$89$ $$1 - 3643178 T^{2} + 6505439011133 T^{4} - 7720859292932177528 T^{6} +$$$$69\!\cdots\!98$$$$T^{8} -$$$$52\!\cdots\!28$$$$T^{10} +$$$$34\!\cdots\!78$$$$T^{12} -$$$$19\!\cdots\!88$$$$T^{14} +$$$$79\!\cdots\!73$$$$T^{16} -$$$$22\!\cdots\!98$$$$T^{18} +$$$$30\!\cdots\!01$$$$T^{20}$$
$97$ $$( 1 + 2 T + 2565789 T^{2} - 723000584 T^{3} + 3231145430658 T^{4} - 1257303020547316 T^{5} + 2948979193634928834 T^{6} -$$$$60\!\cdots\!36$$$$T^{7} +$$$$19\!\cdots\!13$$$$T^{8} +$$$$13\!\cdots\!82$$$$T^{9} +$$$$63\!\cdots\!93$$$$T^{10} )^{2}$$