Properties

Label 128.3.l.a.3.7
Level $128$
Weight $3$
Character 128.3
Analytic conductor $3.488$
Analytic rank $0$
Dimension $496$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 128.l (of order \(32\), degree \(16\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.48774738381\)
Analytic rank: \(0\)
Dimension: \(496\)
Relative dimension: \(31\) over \(\Q(\zeta_{32})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{32}]$

Embedding invariants

Embedding label 3.7
Character \(\chi\) \(=\) 128.3
Dual form 128.3.l.a.43.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.57051 - 1.23834i) q^{2} +(-3.06977 + 2.51930i) q^{3} +(0.933028 + 3.88966i) q^{4} +(-2.31969 - 0.703669i) q^{5} +(7.94087 - 0.155169i) q^{6} +(0.668264 + 3.35959i) q^{7} +(3.35139 - 7.26417i) q^{8} +(1.32084 - 6.64029i) q^{9} +O(q^{10})\) \(q+(-1.57051 - 1.23834i) q^{2} +(-3.06977 + 2.51930i) q^{3} +(0.933028 + 3.88966i) q^{4} +(-2.31969 - 0.703669i) q^{5} +(7.94087 - 0.155169i) q^{6} +(0.668264 + 3.35959i) q^{7} +(3.35139 - 7.26417i) q^{8} +(1.32084 - 6.64029i) q^{9} +(2.77172 + 3.97768i) q^{10} +(-0.756988 - 7.68583i) q^{11} +(-12.6634 - 9.58981i) q^{12} +(-5.37205 - 17.7093i) q^{13} +(3.11080 - 6.10382i) q^{14} +(8.89366 - 3.68388i) q^{15} +(-14.2589 + 7.25832i) q^{16} +(7.14813 - 17.2571i) q^{17} +(-10.2973 + 8.79303i) q^{18} +(-5.16252 + 9.65839i) q^{19} +(0.572702 - 9.67933i) q^{20} +(-10.5152 - 8.62963i) q^{21} +(-8.32881 + 13.0081i) q^{22} +(9.35088 - 6.24806i) q^{23} +(8.01261 + 30.7425i) q^{24} +(-15.9010 - 10.6247i) q^{25} +(-13.4932 + 34.4651i) q^{26} +(-4.17386 - 7.80874i) q^{27} +(-12.4442 + 5.73391i) q^{28} +(3.05110 - 30.9783i) q^{29} +(-18.5295 - 5.22780i) q^{30} +(31.4307 + 31.4307i) q^{31} +(31.3821 + 6.25809i) q^{32} +(21.6867 + 21.6867i) q^{33} +(-32.5964 + 18.2507i) q^{34} +(0.813877 - 8.26343i) q^{35} +(27.0609 - 1.05797i) q^{36} +(-1.11698 - 2.08972i) q^{37} +(20.0682 - 8.77569i) q^{38} +(61.1060 + 40.8297i) q^{39} +(-12.8857 + 14.4923i) q^{40} +(-21.7739 + 14.5488i) q^{41} +(5.82790 + 26.5744i) q^{42} +(-24.7111 - 20.2799i) q^{43} +(29.1890 - 10.1155i) q^{44} +(-7.73649 + 14.4740i) q^{45} +(-22.4229 - 1.76691i) q^{46} +(10.7217 - 25.8845i) q^{47} +(25.4858 - 58.2039i) q^{48} +(34.4298 - 14.2613i) q^{49} +(11.8157 + 36.3770i) q^{50} +(21.5327 + 70.9838i) q^{51} +(63.8708 - 37.4187i) q^{52} +(0.467870 + 4.75036i) q^{53} +(-3.11477 + 17.4324i) q^{54} +(-3.65230 + 18.3614i) q^{55} +(26.6442 + 6.40491i) q^{56} +(-8.48461 - 42.6550i) q^{57} +(-43.1535 + 44.8736i) q^{58} +(-63.8118 - 19.3571i) q^{59} +(22.6271 + 31.1562i) q^{60} +(-75.2167 + 61.7287i) q^{61} +(-10.4405 - 88.2842i) q^{62} +23.1913 q^{63} +(-41.5364 - 48.6901i) q^{64} +44.8601i q^{65} +(-7.20375 - 60.9147i) q^{66} +(-39.2184 - 47.7878i) q^{67} +(73.7938 + 11.7024i) q^{68} +(-12.9644 + 42.7378i) q^{69} +(-11.5111 + 11.9700i) q^{70} +(-111.715 + 22.2214i) q^{71} +(-43.8096 - 31.8490i) q^{72} +(-105.633 - 21.0117i) q^{73} +(-0.833552 + 4.66512i) q^{74} +(75.5791 - 7.44389i) q^{75} +(-42.3847 - 11.0689i) q^{76} +(25.3154 - 7.67933i) q^{77} +(-45.4067 - 139.794i) q^{78} +(-8.95686 - 21.6238i) q^{79} +(38.1837 - 6.80347i) q^{80} +(88.7805 + 36.7741i) q^{81} +(52.2126 + 4.11431i) q^{82} +(22.6453 + 12.1042i) q^{83} +(23.7553 - 48.9524i) q^{84} +(-28.7247 + 35.0012i) q^{85} +(13.6958 + 62.4506i) q^{86} +(68.6775 + 102.783i) q^{87} +(-58.3681 - 20.2593i) q^{88} +(58.8575 - 88.0865i) q^{89} +(30.0740 - 13.1511i) q^{90} +(55.9060 - 29.8824i) q^{91} +(33.0275 + 30.5421i) q^{92} +(-175.668 - 17.3018i) q^{93} +(-48.8924 + 27.3749i) q^{94} +(18.7717 - 18.7717i) q^{95} +(-112.102 + 59.8500i) q^{96} +(67.0884 - 67.0884i) q^{97} +(-71.7329 - 20.2383i) q^{98} +(-52.0360 - 5.12510i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 496q - 16q^{2} - 16q^{3} - 16q^{4} - 16q^{5} - 16q^{6} - 16q^{7} - 16q^{8} - 16q^{9} + O(q^{10}) \) \( 496q - 16q^{2} - 16q^{3} - 16q^{4} - 16q^{5} - 16q^{6} - 16q^{7} - 16q^{8} - 16q^{9} - 16q^{10} - 16q^{11} - 16q^{12} - 16q^{13} - 16q^{14} - 16q^{15} - 16q^{16} - 16q^{17} - 16q^{18} - 16q^{19} - 16q^{20} - 16q^{21} - 16q^{22} - 16q^{23} - 16q^{24} - 16q^{25} - 16q^{26} - 16q^{27} - 16q^{28} - 16q^{29} - 16q^{30} - 16q^{31} - 16q^{32} - 16q^{33} - 16q^{34} - 16q^{35} - 16q^{36} - 16q^{37} - 16q^{38} - 16q^{39} - 16q^{40} - 16q^{41} - 16q^{42} - 16q^{43} - 16q^{44} - 16q^{45} - 16q^{46} - 16q^{47} - 16q^{48} - 16q^{49} - 640q^{50} - 16q^{51} - 1072q^{52} - 16q^{53} - 1168q^{54} - 16q^{55} - 800q^{56} - 16q^{57} - 736q^{58} - 16q^{59} - 592q^{60} - 16q^{61} - 112q^{62} - 32q^{63} + 176q^{64} + 560q^{66} - 16q^{67} + 464q^{68} - 16q^{69} + 1328q^{70} - 16q^{71} + 1280q^{72} - 16q^{73} + 1216q^{74} - 16q^{75} + 1648q^{76} - 16q^{77} + 1424q^{78} - 16q^{79} + 800q^{80} - 16q^{81} - 16q^{82} - 16q^{83} - 16q^{84} - 16q^{85} - 16q^{86} - 16q^{87} - 16q^{88} - 16q^{89} - 16q^{90} - 16q^{91} - 16q^{92} - 16q^{93} - 16q^{94} - 16q^{95} - 16q^{96} - 16q^{97} - 16q^{98} - 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/128\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{32}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57051 1.23834i −0.785257 0.619170i
\(3\) −3.06977 + 2.51930i −1.02326 + 0.839766i −0.987185 0.159583i \(-0.948985\pi\)
−0.0360737 + 0.999349i \(0.511485\pi\)
\(4\) 0.933028 + 3.88966i 0.233257 + 0.972415i
\(5\) −2.31969 0.703669i −0.463937 0.140734i 0.0496583 0.998766i \(-0.484187\pi\)
−0.513595 + 0.858032i \(0.671687\pi\)
\(6\) 7.94087 0.155169i 1.32348 0.0258615i
\(7\) 0.668264 + 3.35959i 0.0954663 + 0.479941i 0.998708 + 0.0508100i \(0.0161803\pi\)
−0.903242 + 0.429131i \(0.858820\pi\)
\(8\) 3.35139 7.26417i 0.418924 0.908021i
\(9\) 1.32084 6.64029i 0.146760 0.737810i
\(10\) 2.77172 + 3.97768i 0.277172 + 0.397768i
\(11\) −0.756988 7.68583i −0.0688171 0.698712i −0.966258 0.257577i \(-0.917076\pi\)
0.897441 0.441135i \(-0.145424\pi\)
\(12\) −12.6634 9.58981i −1.05528 0.799150i
\(13\) −5.37205 17.7093i −0.413235 1.36225i −0.878779 0.477228i \(-0.841642\pi\)
0.465545 0.885024i \(-0.345858\pi\)
\(14\) 3.11080 6.10382i 0.222200 0.435987i
\(15\) 8.89366 3.68388i 0.592911 0.245592i
\(16\) −14.2589 + 7.25832i −0.891182 + 0.453645i
\(17\) 7.14813 17.2571i 0.420479 1.01512i −0.561728 0.827322i \(-0.689863\pi\)
0.982207 0.187803i \(-0.0601367\pi\)
\(18\) −10.2973 + 8.79303i −0.572074 + 0.488502i
\(19\) −5.16252 + 9.65839i −0.271712 + 0.508337i −0.980358 0.197227i \(-0.936806\pi\)
0.708646 + 0.705564i \(0.249306\pi\)
\(20\) 0.572702 9.67933i 0.0286351 0.483967i
\(21\) −10.5152 8.62963i −0.500725 0.410935i
\(22\) −8.32881 + 13.0081i −0.378582 + 0.591278i
\(23\) 9.35088 6.24806i 0.406560 0.271655i −0.335431 0.942065i \(-0.608882\pi\)
0.741991 + 0.670410i \(0.233882\pi\)
\(24\) 8.01261 + 30.7425i 0.333859 + 1.28094i
\(25\) −15.9010 10.6247i −0.636038 0.424987i
\(26\) −13.4932 + 34.4651i −0.518970 + 1.32558i
\(27\) −4.17386 7.80874i −0.154587 0.289212i
\(28\) −12.4442 + 5.73391i −0.444434 + 0.204783i
\(29\) 3.05110 30.9783i 0.105210 1.06822i −0.787109 0.616814i \(-0.788423\pi\)
0.892320 0.451404i \(-0.149077\pi\)
\(30\) −18.5295 5.22780i −0.617650 0.174260i
\(31\) 31.4307 + 31.4307i 1.01389 + 1.01389i 0.999902 + 0.0139910i \(0.00445361\pi\)
0.0139910 + 0.999902i \(0.495546\pi\)
\(32\) 31.3821 + 6.25809i 0.980691 + 0.195565i
\(33\) 21.6867 + 21.6867i 0.657172 + 0.657172i
\(34\) −32.5964 + 18.2507i −0.958719 + 0.536786i
\(35\) 0.813877 8.26343i 0.0232536 0.236098i
\(36\) 27.0609 1.05797i 0.751691 0.0293882i
\(37\) −1.11698 2.08972i −0.0301886 0.0564788i 0.866375 0.499394i \(-0.166444\pi\)
−0.896563 + 0.442916i \(0.853944\pi\)
\(38\) 20.0682 8.77569i 0.528110 0.230939i
\(39\) 61.1060 + 40.8297i 1.56682 + 1.04692i
\(40\) −12.8857 + 14.4923i −0.322143 + 0.362308i
\(41\) −21.7739 + 14.5488i −0.531070 + 0.354849i −0.792013 0.610505i \(-0.790967\pi\)
0.260943 + 0.965354i \(0.415967\pi\)
\(42\) 5.82790 + 26.5744i 0.138760 + 0.632723i
\(43\) −24.7111 20.2799i −0.574677 0.471625i 0.301599 0.953435i \(-0.402480\pi\)
−0.876276 + 0.481810i \(0.839980\pi\)
\(44\) 29.1890 10.1155i 0.663386 0.229898i
\(45\) −7.73649 + 14.4740i −0.171922 + 0.321644i
\(46\) −22.4229 1.76691i −0.487455 0.0384110i
\(47\) 10.7217 25.8845i 0.228122 0.550734i −0.767827 0.640657i \(-0.778662\pi\)
0.995949 + 0.0899228i \(0.0286620\pi\)
\(48\) 25.4858 58.2039i 0.530954 1.21258i
\(49\) 34.4298 14.2613i 0.702650 0.291047i
\(50\) 11.8157 + 36.3770i 0.236314 + 0.727540i
\(51\) 21.5327 + 70.9838i 0.422210 + 1.39184i
\(52\) 63.8708 37.4187i 1.22829 0.719591i
\(53\) 0.467870 + 4.75036i 0.00882773 + 0.0896295i 0.998589 0.0531030i \(-0.0169112\pi\)
−0.989761 + 0.142732i \(0.954411\pi\)
\(54\) −3.11477 + 17.4324i −0.0576810 + 0.322822i
\(55\) −3.65230 + 18.3614i −0.0664055 + 0.333843i
\(56\) 26.6442 + 6.40491i 0.475790 + 0.114373i
\(57\) −8.48461 42.6550i −0.148853 0.748334i
\(58\) −43.1535 + 44.8736i −0.744026 + 0.773682i
\(59\) −63.8118 19.3571i −1.08156 0.328086i −0.301289 0.953533i \(-0.597417\pi\)
−0.780267 + 0.625447i \(0.784917\pi\)
\(60\) 22.6271 + 31.1562i 0.377118 + 0.519270i
\(61\) −75.2167 + 61.7287i −1.23306 + 1.01195i −0.233847 + 0.972273i \(0.575132\pi\)
−0.999213 + 0.0396728i \(0.987368\pi\)
\(62\) −10.4405 88.2842i −0.168394 1.42394i
\(63\) 23.1913 0.368116
\(64\) −41.5364 48.6901i −0.649006 0.760783i
\(65\) 44.8601i 0.690156i
\(66\) −7.20375 60.9147i −0.109148 0.922950i
\(67\) −39.2184 47.7878i −0.585349 0.713250i 0.393156 0.919472i \(-0.371383\pi\)
−0.978505 + 0.206221i \(0.933883\pi\)
\(68\) 73.7938 + 11.7024i 1.08520 + 0.172095i
\(69\) −12.9644 + 42.7378i −0.187889 + 0.619388i
\(70\) −11.5111 + 11.9700i −0.164445 + 0.171000i
\(71\) −111.715 + 22.2214i −1.57345 + 0.312978i −0.903220 0.429178i \(-0.858803\pi\)
−0.670227 + 0.742156i \(0.733803\pi\)
\(72\) −43.8096 31.8490i −0.608467 0.442347i
\(73\) −105.633 21.0117i −1.44702 0.287831i −0.591798 0.806086i \(-0.701582\pi\)
−0.855226 + 0.518255i \(0.826582\pi\)
\(74\) −0.833552 + 4.66512i −0.0112642 + 0.0630422i
\(75\) 75.5791 7.44389i 1.00772 0.0992519i
\(76\) −42.3847 11.0689i −0.557693 0.145643i
\(77\) 25.3154 7.67933i 0.328771 0.0997315i
\(78\) −45.4067 139.794i −0.582137 1.79223i
\(79\) −8.95686 21.6238i −0.113378 0.273718i 0.856997 0.515321i \(-0.172327\pi\)
−0.970375 + 0.241602i \(0.922327\pi\)
\(80\) 38.1837 6.80347i 0.477296 0.0850434i
\(81\) 88.7805 + 36.7741i 1.09606 + 0.454001i
\(82\) 52.2126 + 4.11431i 0.636738 + 0.0501745i
\(83\) 22.6453 + 12.1042i 0.272835 + 0.145833i 0.602141 0.798390i \(-0.294315\pi\)
−0.329306 + 0.944223i \(0.606815\pi\)
\(84\) 23.7553 48.9524i 0.282801 0.582766i
\(85\) −28.7247 + 35.0012i −0.337938 + 0.411779i
\(86\) 13.6958 + 62.4506i 0.159253 + 0.726170i
\(87\) 68.6775 + 102.783i 0.789396 + 1.18141i
\(88\) −58.3681 20.2593i −0.663274 0.230219i
\(89\) 58.8575 88.0865i 0.661321 0.989736i −0.337507 0.941323i \(-0.609584\pi\)
0.998827 0.0484133i \(-0.0154164\pi\)
\(90\) 30.0740 13.1511i 0.334155 0.146124i
\(91\) 55.9060 29.8824i 0.614351 0.328378i
\(92\) 33.0275 + 30.5421i 0.358994 + 0.331980i
\(93\) −175.668 17.3018i −1.88891 0.186041i
\(94\) −48.8924 + 27.3749i −0.520132 + 0.291222i
\(95\) 18.7717 18.7717i 0.197597 0.197597i
\(96\) −112.102 + 59.8500i −1.16773 + 0.623437i
\(97\) 67.0884 67.0884i 0.691633 0.691633i −0.270958 0.962591i \(-0.587341\pi\)
0.962591 + 0.270958i \(0.0873406\pi\)
\(98\) −71.7329 20.2383i −0.731968 0.206513i
\(99\) −52.0360 5.12510i −0.525616 0.0517687i
\(100\) 26.4904 71.7624i 0.264904 0.717624i
\(101\) 59.8780 32.0054i 0.592851 0.316886i −0.147546 0.989055i \(-0.547137\pi\)
0.740397 + 0.672170i \(0.234637\pi\)
\(102\) 54.0847 138.146i 0.530242 1.35437i
\(103\) −89.8658 + 134.494i −0.872484 + 1.30576i 0.0786241 + 0.996904i \(0.474947\pi\)
−0.951108 + 0.308860i \(0.900053\pi\)
\(104\) −146.647 20.3272i −1.41007 0.195454i
\(105\) 18.3196 + 27.4173i 0.174473 + 0.261117i
\(106\) 5.14777 8.03989i 0.0485638 0.0758480i
\(107\) 31.8430 38.8008i 0.297598 0.362624i −0.602647 0.798008i \(-0.705887\pi\)
0.900245 + 0.435384i \(0.143387\pi\)
\(108\) 26.4790 23.5207i 0.245176 0.217784i
\(109\) 152.305 + 81.4088i 1.39729 + 0.746869i 0.986330 0.164782i \(-0.0526921\pi\)
0.410964 + 0.911652i \(0.365192\pi\)
\(110\) 28.4736 24.3140i 0.258851 0.221036i
\(111\) 8.69349 + 3.60096i 0.0783197 + 0.0324411i
\(112\) −33.9137 43.0536i −0.302801 0.384407i
\(113\) −79.7993 192.653i −0.706189 1.70489i −0.709312 0.704895i \(-0.750994\pi\)
0.00312314 0.999995i \(-0.499006\pi\)
\(114\) −39.4962 + 77.4972i −0.346458 + 0.679800i
\(115\) −26.0877 + 7.91361i −0.226849 + 0.0688140i
\(116\) 123.342 17.0359i 1.06329 0.146861i
\(117\) −124.690 + 12.2809i −1.06573 + 0.104965i
\(118\) 76.2466 + 109.421i 0.646158 + 0.927299i
\(119\) 62.7537 + 12.4825i 0.527342 + 0.104895i
\(120\) 3.04582 76.9512i 0.0253818 0.641260i
\(121\) 60.1761 11.9698i 0.497323 0.0989238i
\(122\) 194.570 3.80201i 1.59484 0.0311640i
\(123\) 30.1880 99.5165i 0.245431 0.809077i
\(124\) −92.9290 + 151.580i −0.749427 + 1.22242i
\(125\) 67.8542 + 82.6806i 0.542834 + 0.661445i
\(126\) −36.4223 28.7188i −0.289066 0.227927i
\(127\) 106.511i 0.838668i −0.907832 0.419334i \(-0.862264\pi\)
0.907832 0.419334i \(-0.137736\pi\)
\(128\) 4.93853 + 127.905i 0.0385822 + 0.999255i
\(129\) 126.949 0.984098
\(130\) 55.5521 70.4534i 0.427324 0.541949i
\(131\) −128.669 + 105.596i −0.982209 + 0.806078i −0.981017 0.193921i \(-0.937879\pi\)
−0.00119221 + 0.999999i \(0.500379\pi\)
\(132\) −64.1195 + 104.588i −0.485754 + 0.792334i
\(133\) −35.8982 10.8896i −0.269911 0.0818766i
\(134\) 2.41555 + 123.617i 0.0180265 + 0.922516i
\(135\) 4.18727 + 21.0508i 0.0310168 + 0.155932i
\(136\) −101.403 109.761i −0.745607 0.807063i
\(137\) 6.97564 35.0689i 0.0509171 0.255977i −0.946940 0.321411i \(-0.895843\pi\)
0.997857 + 0.0654334i \(0.0208430\pi\)
\(138\) 73.2847 51.0660i 0.531048 0.370044i
\(139\) 6.14086 + 62.3492i 0.0441788 + 0.448555i 0.991673 + 0.128782i \(0.0411067\pi\)
−0.947494 + 0.319773i \(0.896393\pi\)
\(140\) 32.9013 4.54430i 0.235009 0.0324593i
\(141\) 32.2976 + 106.471i 0.229061 + 0.755112i
\(142\) 202.967 + 103.442i 1.42935 + 0.728463i
\(143\) −132.044 + 54.6944i −0.923384 + 0.382478i
\(144\) 29.3637 + 104.270i 0.203915 + 0.724100i
\(145\) −28.8761 + 69.7130i −0.199145 + 0.480779i
\(146\) 139.878 + 163.808i 0.958070 + 1.12198i
\(147\) −69.7633 + 130.518i −0.474581 + 0.887878i
\(148\) 7.08612 6.29442i 0.0478792 0.0425299i
\(149\) 97.6998 + 80.1802i 0.655703 + 0.538122i 0.902361 0.430981i \(-0.141832\pi\)
−0.246658 + 0.969103i \(0.579332\pi\)
\(150\) −127.916 81.9019i −0.852774 0.546012i
\(151\) 72.4085 48.3818i 0.479526 0.320409i −0.292207 0.956355i \(-0.594390\pi\)
0.771734 + 0.635946i \(0.219390\pi\)
\(152\) 52.8586 + 69.8705i 0.347754 + 0.459674i
\(153\) −105.151 70.2596i −0.687261 0.459213i
\(154\) −49.2677 19.2885i −0.319920 0.125250i
\(155\) −50.7925 95.0261i −0.327694 0.613072i
\(156\) −101.800 + 275.777i −0.652565 + 1.76780i
\(157\) −15.1577 + 153.899i −0.0965459 + 0.980247i 0.817851 + 0.575429i \(0.195165\pi\)
−0.914397 + 0.404818i \(0.867335\pi\)
\(158\) −12.7107 + 45.0521i −0.0804475 + 0.285140i
\(159\) −13.4038 13.4038i −0.0843009 0.0843009i
\(160\) −68.3930 36.5994i −0.427456 0.228746i
\(161\) 27.2398 + 27.2398i 0.169191 + 0.169191i
\(162\) −93.8922 167.695i −0.579582 1.03515i
\(163\) 27.0348 274.489i 0.165857 1.68398i −0.447587 0.894241i \(-0.647716\pi\)
0.613444 0.789738i \(-0.289784\pi\)
\(164\) −76.9056 71.1185i −0.468937 0.433649i
\(165\) −35.0460 65.5665i −0.212400 0.397373i
\(166\) −20.5757 47.0523i −0.123950 0.283448i
\(167\) 120.067 + 80.2260i 0.718962 + 0.480395i 0.860444 0.509546i \(-0.170187\pi\)
−0.141481 + 0.989941i \(0.545187\pi\)
\(168\) −97.9277 + 47.4632i −0.582903 + 0.282519i
\(169\) −144.241 + 96.3791i −0.853500 + 0.570290i
\(170\) 88.4559 19.3989i 0.520329 0.114111i
\(171\) 57.3157 + 47.0378i 0.335180 + 0.275075i
\(172\) 55.8257 115.040i 0.324568 0.668835i
\(173\) −68.8001 + 128.716i −0.397688 + 0.744022i −0.998465 0.0553948i \(-0.982358\pi\)
0.600776 + 0.799417i \(0.294858\pi\)
\(174\) 19.4215 246.468i 0.111618 1.41648i
\(175\) 25.0685 60.5208i 0.143249 0.345833i
\(176\) 66.5800 + 104.097i 0.378296 + 0.591461i
\(177\) 244.654 101.339i 1.38223 0.572537i
\(178\) −201.518 + 65.4555i −1.13212 + 0.367727i
\(179\) −76.6054 252.534i −0.427963 1.41081i −0.860620 0.509247i \(-0.829924\pi\)
0.432657 0.901559i \(-0.357576\pi\)
\(180\) −63.5172 16.5877i −0.352873 0.0921540i
\(181\) −11.4658 116.415i −0.0633472 0.643175i −0.973467 0.228829i \(-0.926510\pi\)
0.910120 0.414346i \(-0.135990\pi\)
\(182\) −124.806 22.2999i −0.685745 0.122527i
\(183\) 75.3851 378.987i 0.411940 2.07096i
\(184\) −14.0485 88.8661i −0.0763507 0.482968i
\(185\) 1.12057 + 5.63346i 0.00605711 + 0.0304512i
\(186\) 254.464 + 244.710i 1.36809 + 1.31565i
\(187\) −138.046 41.8759i −0.738216 0.223935i
\(188\) 110.686 + 17.5529i 0.588753 + 0.0933663i
\(189\) 23.4449 19.2407i 0.124047 0.101803i
\(190\) −52.7271 + 6.23548i −0.277511 + 0.0328183i
\(191\) −305.021 −1.59697 −0.798485 0.602014i \(-0.794365\pi\)
−0.798485 + 0.602014i \(0.794365\pi\)
\(192\) 250.172 + 44.8252i 1.30298 + 0.233464i
\(193\) 355.972i 1.84441i 0.386697 + 0.922207i \(0.373616\pi\)
−0.386697 + 0.922207i \(0.626384\pi\)
\(194\) −188.441 + 22.2850i −0.971347 + 0.114871i
\(195\) −113.016 137.710i −0.579569 0.706207i
\(196\) 87.5956 + 120.614i 0.446916 + 0.615378i
\(197\) 37.9802 125.204i 0.192793 0.635554i −0.806240 0.591589i \(-0.798501\pi\)
0.999033 0.0439651i \(-0.0139990\pi\)
\(198\) 75.3767 + 72.4873i 0.380690 + 0.366098i
\(199\) −22.0823 + 4.39244i −0.110966 + 0.0220726i −0.250261 0.968178i \(-0.580516\pi\)
0.139295 + 0.990251i \(0.455516\pi\)
\(200\) −130.470 + 79.8998i −0.652349 + 0.399499i
\(201\) 240.783 + 47.8948i 1.19793 + 0.238283i
\(202\) −133.673 23.8843i −0.661747 0.118239i
\(203\) 106.113 10.4513i 0.522726 0.0514840i
\(204\) −256.012 + 149.985i −1.25496 + 0.735219i
\(205\) 60.7461 18.4271i 0.296322 0.0898884i
\(206\) 307.684 99.9398i 1.49361 0.485145i
\(207\) −29.1380 70.3453i −0.140763 0.339832i
\(208\) 205.139 + 213.523i 0.986247 + 1.02655i
\(209\) 78.1407 + 32.3669i 0.373879 + 0.154866i
\(210\) 5.18066 65.7451i 0.0246698 0.313072i
\(211\) 246.968 + 132.007i 1.17046 + 0.625626i 0.937883 0.346951i \(-0.112783\pi\)
0.232580 + 0.972577i \(0.425283\pi\)
\(212\) −18.0408 + 6.25207i −0.0850979 + 0.0294909i
\(213\) 286.957 349.658i 1.34721 1.64158i
\(214\) −98.0584 + 21.5047i −0.458217 + 0.100489i
\(215\) 43.0517 + 64.4314i 0.200240 + 0.299681i
\(216\) −70.7122 + 4.14950i −0.327371 + 0.0192106i
\(217\) −84.5902 + 126.598i −0.389817 + 0.583402i
\(218\) −138.385 316.459i −0.634796 1.45165i
\(219\) 377.204 201.620i 1.72239 0.920637i
\(220\) −74.8272 + 2.92545i −0.340124 + 0.0132975i
\(221\) −344.011 33.8822i −1.55661 0.153313i
\(222\) −9.19403 16.4208i −0.0414145 0.0739678i
\(223\) 179.457 179.457i 0.804739 0.804739i −0.179093 0.983832i \(-0.557316\pi\)
0.983832 + 0.179093i \(0.0573162\pi\)
\(224\) −0.0530913 + 109.613i −0.000237015 + 0.489344i
\(225\) −91.5535 + 91.5535i −0.406905 + 0.406905i
\(226\) −113.243 + 401.382i −0.501077 + 1.77603i
\(227\) −343.513 33.8331i −1.51328 0.149045i −0.692968 0.720968i \(-0.743697\pi\)
−0.820307 + 0.571923i \(0.806197\pi\)
\(228\) 157.997 72.8006i 0.692970 0.319301i
\(229\) 320.788 171.464i 1.40082 0.748753i 0.413953 0.910298i \(-0.364148\pi\)
0.986865 + 0.161545i \(0.0516476\pi\)
\(230\) 50.7708 + 19.8770i 0.220743 + 0.0864216i
\(231\) −58.3659 + 87.3508i −0.252666 + 0.378142i
\(232\) −214.806 125.984i −0.925890 0.543035i
\(233\) 121.267 + 181.488i 0.520458 + 0.778920i 0.994846 0.101395i \(-0.0323307\pi\)
−0.474388 + 0.880316i \(0.657331\pi\)
\(234\) 211.036 + 135.122i 0.901864 + 0.577444i
\(235\) −43.0851 + 52.4994i −0.183341 + 0.223402i
\(236\) 15.7543 266.267i 0.0667557 1.12825i
\(237\) 81.9723 + 43.8151i 0.345874 + 0.184874i
\(238\) −83.0980 97.3143i −0.349151 0.408884i
\(239\) 2.16576 + 0.897087i 0.00906176 + 0.00375350i 0.387210 0.921992i \(-0.373439\pi\)
−0.378148 + 0.925745i \(0.623439\pi\)
\(240\) −100.075 + 117.081i −0.416980 + 0.487838i
\(241\) −56.5810 136.599i −0.234776 0.566800i 0.761951 0.647634i \(-0.224241\pi\)
−0.996728 + 0.0808346i \(0.974241\pi\)
\(242\) −109.330 55.7198i −0.451777 0.230247i
\(243\) −288.924 + 87.6443i −1.18899 + 0.360676i
\(244\) −310.283 234.973i −1.27165 0.963003i
\(245\) −89.9016 + 8.85454i −0.366945 + 0.0361410i
\(246\) −170.646 + 118.909i −0.693683 + 0.483370i
\(247\) 198.777 + 39.5391i 0.804764 + 0.160077i
\(248\) 333.654 122.981i 1.34538 0.495893i
\(249\) −100.010 + 19.8932i −0.401646 + 0.0798925i
\(250\) −4.17929 213.878i −0.0167172 0.855510i
\(251\) −17.7830 + 58.6225i −0.0708484 + 0.233556i −0.985212 0.171337i \(-0.945191\pi\)
0.914364 + 0.404893i \(0.132691\pi\)
\(252\) 21.6382 + 90.2064i 0.0858657 + 0.357962i
\(253\) −55.1000 67.1395i −0.217787 0.265374i
\(254\) −131.897 + 167.277i −0.519278 + 0.658570i
\(255\) 179.812i 0.705145i
\(256\) 150.633 206.992i 0.588412 0.808561i
\(257\) −398.946 −1.55232 −0.776159 0.630537i \(-0.782835\pi\)
−0.776159 + 0.630537i \(0.782835\pi\)
\(258\) −199.375 157.206i −0.772770 0.609324i
\(259\) 6.27415 5.14906i 0.0242245 0.0198806i
\(260\) −174.491 + 41.8557i −0.671118 + 0.160984i
\(261\) −201.675 61.1775i −0.772702 0.234397i
\(262\) 332.841 6.50391i 1.27039 0.0248241i
\(263\) −16.1277 81.0794i −0.0613220 0.308287i 0.937936 0.346809i \(-0.112735\pi\)
−0.999258 + 0.0385225i \(0.987735\pi\)
\(264\) 230.216 84.8553i 0.872031 0.321421i
\(265\) 2.25737 11.3486i 0.00851838 0.0428248i
\(266\) 42.8936 + 61.5564i 0.161254 + 0.231415i
\(267\) 41.2369 + 418.686i 0.154445 + 1.56811i
\(268\) 149.286 197.134i 0.557039 0.735573i
\(269\) 32.9512 + 108.626i 0.122495 + 0.403813i 0.996645 0.0818432i \(-0.0260807\pi\)
−0.874150 + 0.485656i \(0.838581\pi\)
\(270\) 19.4919 38.2459i 0.0721923 0.141651i
\(271\) −216.654 + 89.7409i −0.799460 + 0.331147i −0.744740 0.667355i \(-0.767427\pi\)
−0.0547198 + 0.998502i \(0.517427\pi\)
\(272\) 23.3331 + 297.951i 0.0857835 + 1.09541i
\(273\) −96.3361 + 232.576i −0.352880 + 0.851927i
\(274\) −54.3826 + 46.4380i −0.198476 + 0.169482i
\(275\) −69.6226 + 130.255i −0.253173 + 0.473653i
\(276\) −178.332 10.5514i −0.646129 0.0382299i
\(277\) 3.30908 + 2.71569i 0.0119461 + 0.00980395i 0.640347 0.768085i \(-0.278790\pi\)
−0.628401 + 0.777889i \(0.716290\pi\)
\(278\) 67.5652 105.525i 0.243040 0.379585i
\(279\) 250.224 167.194i 0.896860 0.599262i
\(280\) −57.2993 33.6061i −0.204640 0.120022i
\(281\) −366.297 244.752i −1.30355 0.871002i −0.306814 0.951769i \(-0.599263\pi\)
−0.996733 + 0.0807671i \(0.974263\pi\)
\(282\) 81.1233 207.209i 0.287671 0.734785i
\(283\) 252.976 + 473.285i 0.893909 + 1.67239i 0.727251 + 0.686372i \(0.240798\pi\)
0.166659 + 0.986015i \(0.446702\pi\)
\(284\) −190.667 413.799i −0.671362 1.45704i
\(285\) −10.3334 + 104.917i −0.0362575 + 0.368128i
\(286\) 275.107 + 77.6170i 0.961913 + 0.271388i
\(287\) −63.4288 63.4288i −0.221006 0.221006i
\(288\) 83.0062 200.120i 0.288216 0.694863i
\(289\) −42.3586 42.3586i −0.146570 0.146570i
\(290\) 131.679 73.7268i 0.454064 0.254230i
\(291\) −36.9305 + 374.962i −0.126909 + 1.28853i
\(292\) −16.8301 430.480i −0.0576373 1.47425i
\(293\) 128.333 + 240.095i 0.437998 + 0.819436i 0.999970 0.00771965i \(-0.00245727\pi\)
−0.561972 + 0.827156i \(0.689957\pi\)
\(294\) 271.190 118.590i 0.922415 0.403366i
\(295\) 134.402 + 89.8047i 0.455601 + 0.304423i
\(296\) −18.9235 + 1.11046i −0.0639307 + 0.00375155i
\(297\) −56.8570 + 37.9907i −0.191438 + 0.127915i
\(298\) −54.1486 246.910i −0.181707 0.828556i
\(299\) −160.882 132.033i −0.538067 0.441580i
\(300\) 99.4716 + 287.032i 0.331572 + 0.956772i
\(301\) 51.6186 96.5715i 0.171490 0.320836i
\(302\) −173.632 13.6820i −0.574939 0.0453047i
\(303\) −103.181 + 249.100i −0.340530 + 0.822112i
\(304\) 3.50819 175.189i 0.0115401 0.576281i
\(305\) 217.916 90.2636i 0.714477 0.295946i
\(306\) 78.1357 + 240.556i 0.255345 + 0.786131i
\(307\) 13.8283 + 45.5858i 0.0450433 + 0.148488i 0.976578 0.215166i \(-0.0690292\pi\)
−0.931534 + 0.363654i \(0.881529\pi\)
\(308\) 53.4899 + 91.3031i 0.173669 + 0.296439i
\(309\) −62.9620 639.264i −0.203761 2.06882i
\(310\) −37.9043 + 212.138i −0.122272 + 0.684317i
\(311\) −87.2021 + 438.395i −0.280393 + 1.40963i 0.541842 + 0.840481i \(0.317727\pi\)
−0.822234 + 0.569149i \(0.807273\pi\)
\(312\) 501.384 307.048i 1.60700 0.984128i
\(313\) −9.01696 45.3313i −0.0288082 0.144829i 0.963704 0.266972i \(-0.0860232\pi\)
−0.992512 + 0.122144i \(0.961023\pi\)
\(314\) 214.384 222.930i 0.682753 0.709968i
\(315\) −53.7966 16.3190i −0.170783 0.0518064i
\(316\) 75.7521 55.0147i 0.239722 0.174097i
\(317\) 278.506 228.564i 0.878567 0.721021i −0.0827194 0.996573i \(-0.526361\pi\)
0.961286 + 0.275552i \(0.0888605\pi\)
\(318\) 4.45240 + 37.6494i 0.0140013 + 0.118394i
\(319\) −240.404 −0.753616
\(320\) 62.0896 + 142.174i 0.194030 + 0.444293i
\(321\) 199.332i 0.620971i
\(322\) −9.04834 76.5125i −0.0281004 0.237617i
\(323\) 129.774 + 158.130i 0.401776 + 0.489566i
\(324\) −60.2041 + 379.637i −0.185815 + 1.17172i
\(325\) −102.735 + 338.671i −0.316107 + 1.04206i
\(326\) −382.369 + 397.610i −1.17291 + 1.21966i
\(327\) −672.635 + 133.795i −2.05699 + 0.409160i
\(328\) 32.7125 + 206.928i 0.0997333 + 0.630878i
\(329\) 94.1263 + 18.7229i 0.286098 + 0.0569084i
\(330\) −26.1534 + 146.372i −0.0792526 + 0.443552i
\(331\) 326.270 32.1348i 0.985709 0.0970839i 0.407702 0.913115i \(-0.366330\pi\)
0.578008 + 0.816031i \(0.303830\pi\)
\(332\) −25.9524 + 99.3760i −0.0781699 + 0.299325i
\(333\) −15.3517 + 4.65688i −0.0461011 + 0.0139846i
\(334\) −89.2193 274.679i −0.267124 0.822394i
\(335\) 57.3476 + 138.449i 0.171187 + 0.413282i
\(336\) 212.572 + 46.7262i 0.632656 + 0.139066i
\(337\) −93.0972 38.5621i −0.276253 0.114428i 0.240256 0.970710i \(-0.422769\pi\)
−0.516509 + 0.856282i \(0.672769\pi\)
\(338\) 345.883 + 27.2553i 1.02332 + 0.0806370i
\(339\) 730.315 + 390.362i 2.15432 + 1.15151i
\(340\) −162.944 79.0723i −0.479246 0.232566i
\(341\) 217.778 265.363i 0.638646 0.778192i
\(342\) −31.7664 144.850i −0.0928841 0.423538i
\(343\) 164.170 + 245.698i 0.478630 + 0.716320i
\(344\) −230.133 + 111.540i −0.668992 + 0.324244i
\(345\) 60.1465 90.0156i 0.174338 0.260915i
\(346\) 267.446 116.952i 0.772964 0.338012i
\(347\) −7.28257 + 3.89262i −0.0209872 + 0.0112179i −0.481857 0.876250i \(-0.660038\pi\)
0.460870 + 0.887468i \(0.347538\pi\)
\(348\) −335.713 + 363.032i −0.964694 + 1.04319i
\(349\) −392.543 38.6621i −1.12476 0.110780i −0.481516 0.876437i \(-0.659914\pi\)
−0.643248 + 0.765658i \(0.722414\pi\)
\(350\) −114.316 + 64.0053i −0.326616 + 0.182872i
\(351\) −115.865 + 115.865i −0.330100 + 0.330100i
\(352\) 24.3427 245.935i 0.0691555 0.698678i
\(353\) −57.9731 + 57.9731i −0.164230 + 0.164230i −0.784438 0.620208i \(-0.787048\pi\)
0.620208 + 0.784438i \(0.287048\pi\)
\(354\) −509.725 143.811i −1.43990 0.406245i
\(355\) 274.779 + 27.0634i 0.774027 + 0.0762350i
\(356\) 397.542 + 146.749i 1.11669 + 0.412215i
\(357\) −224.087 + 119.777i −0.627694 + 0.335510i
\(358\) −192.413 + 491.472i −0.537468 + 1.37283i
\(359\) 219.285 328.183i 0.610821 0.914159i −0.389154 0.921173i \(-0.627233\pi\)
0.999975 + 0.00701386i \(0.00223260\pi\)
\(360\) 79.2133 + 104.707i 0.220037 + 0.290853i
\(361\) 133.928 + 200.437i 0.370991 + 0.555228i
\(362\) −126.154 + 197.029i −0.348491 + 0.544280i
\(363\) −154.572 + 188.346i −0.425817 + 0.518860i
\(364\) 168.394 + 189.574i 0.462621 + 0.520808i
\(365\) 230.250 + 123.071i 0.630821 + 0.337181i
\(366\) −587.708 + 501.851i −1.60576 + 1.37118i
\(367\) 634.100 + 262.653i 1.72779 + 0.715676i 0.999539 + 0.0303695i \(0.00966839\pi\)
0.728255 + 0.685306i \(0.240332\pi\)
\(368\) −87.9830 + 156.962i −0.239084 + 0.426528i
\(369\) 67.8488 + 163.801i 0.183872 + 0.443906i
\(370\) 5.21628 10.2351i 0.0140981 0.0276624i
\(371\) −15.6466 + 4.74635i −0.0421741 + 0.0127934i
\(372\) −96.6053 699.434i −0.259692 1.88020i
\(373\) 85.7557 8.44620i 0.229908 0.0226440i 0.0175930 0.999845i \(-0.494400\pi\)
0.212315 + 0.977201i \(0.431900\pi\)
\(374\) 164.947 + 236.715i 0.441035 + 0.632928i
\(375\) −416.594 82.8658i −1.11092 0.220975i
\(376\) −152.097 164.633i −0.404513 0.437855i
\(377\) −564.995 + 112.384i −1.49866 + 0.298102i
\(378\) −60.6471 + 1.18508i −0.160442 + 0.00313513i
\(379\) 197.876 652.310i 0.522101 1.72114i −0.157468 0.987524i \(-0.550333\pi\)
0.679569 0.733612i \(-0.262167\pi\)
\(380\) 90.5302 + 55.5011i 0.238237 + 0.146056i
\(381\) 268.333 + 326.964i 0.704285 + 0.858174i
\(382\) 479.040 + 377.720i 1.25403 + 0.988796i
\(383\) 699.647i 1.82676i −0.407114 0.913378i \(-0.633465\pi\)
0.407114 0.913378i \(-0.366535\pi\)
\(384\) −337.390 380.197i −0.878621 0.990096i
\(385\) −64.1274 −0.166565
\(386\) 440.814 559.059i 1.14201 1.44834i
\(387\) −167.304 + 137.303i −0.432310 + 0.354787i
\(388\) 323.546 + 198.356i 0.833882 + 0.511226i
\(389\) 7.00107 + 2.12375i 0.0179976 + 0.00545951i 0.299271 0.954168i \(-0.403257\pi\)
−0.281273 + 0.959628i \(0.590757\pi\)
\(390\) 6.96091 + 356.228i 0.0178485 + 0.913406i
\(391\) −40.9822 206.031i −0.104814 0.526934i
\(392\) 11.7912 297.899i 0.0300796 0.759947i
\(393\) 128.958 648.314i 0.328136 1.64965i
\(394\) −214.694 + 149.602i −0.544908 + 0.379701i
\(395\) 5.56112 + 56.4630i 0.0140788 + 0.142944i
\(396\) −28.6161 207.184i −0.0722630 0.523193i
\(397\) −109.499 360.969i −0.275816 0.909242i −0.979962 0.199187i \(-0.936170\pi\)
0.704146 0.710055i \(-0.251330\pi\)
\(398\) 40.1199 + 20.4470i 0.100804 + 0.0513743i
\(399\) 137.633 57.0096i 0.344946 0.142881i
\(400\) 303.848 + 36.0821i 0.759619 + 0.0902053i
\(401\) 151.425 365.572i 0.377618 0.911650i −0.614794 0.788688i \(-0.710761\pi\)
0.992411 0.122962i \(-0.0392393\pi\)
\(402\) −318.844 373.391i −0.793143 0.928834i
\(403\) 387.768 725.462i 0.962203 1.80015i
\(404\) 180.358 + 203.043i 0.446431 + 0.502582i
\(405\) −180.066 147.776i −0.444608 0.364880i
\(406\) −179.595 114.991i −0.442352 0.283228i
\(407\) −15.2157 + 10.1668i −0.0373849 + 0.0249798i
\(408\) 587.803 + 81.4771i 1.44069 + 0.199699i
\(409\) −179.528 119.957i −0.438945 0.293293i 0.316394 0.948628i \(-0.397528\pi\)
−0.755339 + 0.655334i \(0.772528\pi\)
\(410\) −118.222 46.2842i −0.288345 0.112888i
\(411\) 66.9354 + 125.227i 0.162860 + 0.304689i
\(412\) −606.982 224.061i −1.47326 0.543838i
\(413\) 22.3888 227.317i 0.0542101 0.550404i
\(414\) −41.3498 + 146.561i −0.0998787 + 0.354012i
\(415\) −44.0126 44.0126i −0.106055 0.106055i
\(416\) −57.7600 589.373i −0.138846 1.41676i
\(417\) −175.927 175.927i −0.421888 0.421888i
\(418\) −82.6398 147.598i −0.197703 0.353104i
\(419\) −31.2958 + 317.752i −0.0746917 + 0.758358i 0.882772 + 0.469802i \(0.155675\pi\)
−0.957463 + 0.288555i \(0.906825\pi\)
\(420\) −89.5511 + 96.8382i −0.213217 + 0.230567i
\(421\) 293.970 + 549.980i 0.698267 + 1.30636i 0.941702 + 0.336448i \(0.109226\pi\)
−0.243435 + 0.969917i \(0.578274\pi\)
\(422\) −224.397 513.149i −0.531746 1.21599i
\(423\) −157.719 105.385i −0.372858 0.249136i
\(424\) 36.0755 + 12.5216i 0.0850836 + 0.0295321i
\(425\) −297.013 + 198.458i −0.698855 + 0.466960i
\(426\) −883.664 + 193.792i −2.07433 + 0.454911i
\(427\) −257.648 211.446i −0.603390 0.495190i
\(428\) 180.632 + 87.6562i 0.422038 + 0.204804i
\(429\) 267.554 500.558i 0.623668 1.16680i
\(430\) 12.1747 154.503i 0.0283133 0.359309i
\(431\) −9.61411 + 23.2105i −0.0223065 + 0.0538527i −0.934640 0.355595i \(-0.884278\pi\)
0.912334 + 0.409447i \(0.134278\pi\)
\(432\) 116.193 + 81.0489i 0.268965 + 0.187613i
\(433\) −42.3849 + 17.5564i −0.0978866 + 0.0405460i −0.431089 0.902309i \(-0.641871\pi\)
0.333203 + 0.942855i \(0.391871\pi\)
\(434\) 289.622 94.0728i 0.667331 0.216758i
\(435\) −86.9848 286.751i −0.199965 0.659197i
\(436\) −174.548 + 668.372i −0.400338 + 1.53296i
\(437\) 12.0721 + 122.570i 0.0276250 + 0.280481i
\(438\) −842.077 150.460i −1.92255 0.343516i
\(439\) 3.39537 17.0697i 0.00773434 0.0388831i −0.976725 0.214494i \(-0.931190\pi\)
0.984460 + 0.175610i \(0.0561899\pi\)
\(440\) 121.140 + 88.0670i 0.275318 + 0.200152i
\(441\) −49.2231 247.461i −0.111617 0.561136i
\(442\) 498.317 + 479.216i 1.12741 + 1.08420i
\(443\) 102.863 + 31.2032i 0.232197 + 0.0704361i 0.404239 0.914654i \(-0.367537\pi\)
−0.172042 + 0.985090i \(0.555037\pi\)
\(444\) −5.89525 + 37.1745i −0.0132776 + 0.0837264i
\(445\) −198.515 + 162.917i −0.446101 + 0.366105i
\(446\) −504.068 + 59.6109i −1.13020 + 0.133657i
\(447\) −501.914 −1.12285
\(448\) 135.822 172.083i 0.303173 0.384114i
\(449\) 487.456i 1.08565i −0.839846 0.542824i \(-0.817355\pi\)
0.839846 0.542824i \(-0.182645\pi\)
\(450\) 257.160 30.4117i 0.571468 0.0675815i
\(451\) 128.302 + 156.337i 0.284484 + 0.346645i
\(452\) 674.898 490.142i 1.49314 1.08439i
\(453\) −100.390 + 330.940i −0.221610 + 0.730552i
\(454\) 497.596 + 478.522i 1.09603 + 1.05401i
\(455\) −150.712 + 29.9784i −0.331234 + 0.0658866i
\(456\) −338.289 81.3199i −0.741861 0.178333i
\(457\) −269.942 53.6949i −0.590684 0.117494i −0.109307 0.994008i \(-0.534863\pi\)
−0.481377 + 0.876514i \(0.659863\pi\)
\(458\) −716.133 127.957i −1.56361 0.279381i
\(459\) −164.592 + 16.2109i −0.358587 + 0.0353178i
\(460\) −55.1218 94.0885i −0.119830 0.204540i
\(461\) 235.463 71.4270i 0.510766 0.154939i −0.0243732 0.999703i \(-0.507759\pi\)
0.535140 + 0.844764i \(0.320259\pi\)
\(462\) 199.834 64.9087i 0.432542 0.140495i
\(463\) −6.49648 15.6839i −0.0140313 0.0338745i 0.916709 0.399556i \(-0.130836\pi\)
−0.930740 + 0.365682i \(0.880836\pi\)
\(464\) 181.345 + 463.863i 0.390830 + 0.999705i
\(465\) 395.321 + 163.747i 0.850152 + 0.352145i
\(466\) 34.2934 435.200i 0.0735909 0.933905i
\(467\) 111.704 + 59.7070i 0.239195 + 0.127852i 0.586639 0.809848i \(-0.300451\pi\)
−0.347445 + 0.937700i \(0.612951\pi\)
\(468\) −164.108 473.545i −0.350659 1.01185i
\(469\) 134.339 163.693i 0.286437 0.349025i
\(470\) 132.678 29.0970i 0.282293 0.0619084i
\(471\) −341.186 510.622i −0.724387 1.08412i
\(472\) −354.471 + 398.667i −0.750999 + 0.844633i
\(473\) −137.162 + 205.277i −0.289982 + 0.433989i
\(474\) −74.4806 170.322i −0.157132 0.359329i
\(475\) 184.706 98.7276i 0.388855 0.207848i
\(476\) 9.99831 + 255.737i 0.0210049 + 0.537263i
\(477\) 32.1618 + 3.16766i 0.0674251 + 0.00664079i
\(478\) −2.29046 4.09084i −0.00479175 0.00855823i
\(479\) 126.148 126.148i 0.263358 0.263358i −0.563059 0.826417i \(-0.690376\pi\)
0.826417 + 0.563059i \(0.190376\pi\)
\(480\) 302.156 59.9504i 0.629491 0.124897i
\(481\) −31.0069 + 31.0069i −0.0644634 + 0.0644634i
\(482\) −80.2943 + 284.597i −0.166586 + 0.590450i
\(483\) −152.245 14.9948i −0.315207 0.0310452i
\(484\) 102.704 + 222.897i 0.212199 + 0.460530i
\(485\) −202.832 + 108.416i −0.418210 + 0.223538i
\(486\) 562.293 + 220.140i 1.15698 + 0.452963i
\(487\) −221.039 + 330.808i −0.453878 + 0.679276i −0.985877 0.167468i \(-0.946441\pi\)
0.532000 + 0.846745i \(0.321441\pi\)
\(488\) 196.328 + 753.264i 0.402311 + 1.54357i
\(489\) 608.528 + 910.727i 1.24443 + 1.86243i
\(490\) 152.157 + 97.4226i 0.310524 + 0.198822i
\(491\) −505.534 + 615.996i −1.02960 + 1.25457i −0.0630747 + 0.998009i \(0.520091\pi\)
−0.966527 + 0.256565i \(0.917409\pi\)
\(492\) 415.252 + 24.5694i 0.844007 + 0.0499378i
\(493\) −512.787 274.090i −1.04014 0.555964i
\(494\) −263.219 308.250i −0.532831 0.623987i
\(495\) 117.101 + 48.5047i 0.236567 + 0.0979894i
\(496\) −676.302 220.033i −1.36351 0.443616i
\(497\) −149.310 360.466i −0.300422 0.725283i
\(498\) 181.702 + 92.6038i 0.364863 + 0.185951i
\(499\) 494.592 150.033i 0.991165 0.300667i 0.247258 0.968950i \(-0.420470\pi\)
0.743907 + 0.668283i \(0.232970\pi\)
\(500\) −258.290 + 341.073i −0.516579 + 0.682146i
\(501\) −570.691 + 56.2082i −1.13910 + 0.112192i
\(502\) 100.523 70.0462i 0.200245 0.139534i
\(503\) 217.645 + 43.2923i 0.432694 + 0.0860682i 0.406632 0.913592i \(-0.366703\pi\)
0.0260623 + 0.999660i \(0.491703\pi\)
\(504\) 77.7232 168.466i 0.154213 0.334258i
\(505\) −161.419 + 32.1083i −0.319642 + 0.0635808i
\(506\) 3.39373 + 173.676i 0.00670698 + 0.343233i
\(507\) 199.981 659.249i 0.394440 1.30029i
\(508\) 414.291 99.3776i 0.815534 0.195625i
\(509\) 185.449 + 225.970i 0.364339 + 0.443948i 0.922624 0.385701i \(-0.126040\pi\)
−0.558285 + 0.829649i \(0.688540\pi\)
\(510\) −222.668 + 282.397i −0.436604 + 0.553720i
\(511\) 368.924i 0.721965i
\(512\) −492.898 + 138.548i −0.962692 + 0.270601i
\(513\) 96.9675 0.189020
\(514\) 626.550 + 494.031i 1.21897 + 0.961149i
\(515\) 303.099 248.747i 0.588543 0.483004i
\(516\) 118.447 + 493.787i 0.229548 + 0.956952i
\(517\) −207.060 62.8110i −0.400503 0.121491i
\(518\) −16.2299 + 0.317142i −0.0313319 + 0.000612244i
\(519\) −113.073 568.457i −0.217867 1.09529i
\(520\) 325.872 + 150.344i 0.626676 + 0.289122i
\(521\) 84.4672 424.645i 0.162125 0.815058i −0.811047 0.584981i \(-0.801102\pi\)
0.973172 0.230077i \(-0.0738979\pi\)
\(522\) 240.975 + 345.823i 0.461638 + 0.662495i
\(523\) 14.9611 + 151.903i 0.0286064 + 0.290446i 0.998835 + 0.0482548i \(0.0153660\pi\)
−0.970229 + 0.242191i \(0.922134\pi\)
\(524\) −530.786 401.956i −1.01295 0.767092i
\(525\) 75.5152 + 248.940i 0.143838 + 0.474172i
\(526\) −75.0751 + 147.308i −0.142728 + 0.280053i
\(527\) 767.074 317.732i 1.45555 0.602908i
\(528\) −466.637 151.820i −0.883783 0.287537i
\(529\) −154.039 + 371.883i −0.291189 + 0.702992i
\(530\) −17.5986 + 15.0277i −0.0332049 + 0.0283541i
\(531\) −212.822 + 398.161i −0.400794 + 0.749833i
\(532\) 8.86282 149.792i 0.0166594 0.281564i
\(533\) 374.620 + 307.442i 0.702851 + 0.576815i
\(534\) 453.712 708.617i 0.849648 1.32700i
\(535\) −101.169 + 67.5987i −0.189100 + 0.126353i
\(536\) −478.575 + 124.734i −0.892863 + 0.232712i
\(537\) 871.371 + 582.231i 1.62266 + 1.08423i
\(538\) 82.7652 211.403i 0.153839 0.392942i
\(539\) −135.673 253.826i −0.251712 0.470920i
\(540\) −77.9737 + 35.9281i −0.144396 + 0.0665335i
\(541\) 56.3616 572.248i 0.104180 1.05776i −0.790927 0.611910i \(-0.790401\pi\)
0.895108 0.445850i \(-0.147099\pi\)
\(542\) 451.387 + 127.352i 0.832818 + 0.234966i
\(543\) 328.481 + 328.481i 0.604937 + 0.604937i
\(544\) 332.320 496.831i 0.610883 0.913293i
\(545\) −296.015 296.015i −0.543147 0.543147i
\(546\) 439.305 245.967i 0.804589 0.450489i
\(547\) −3.53133 + 35.8542i −0.00645581 + 0.0655469i −0.997873 0.0651905i \(-0.979234\pi\)
0.991417 + 0.130737i \(0.0417345\pi\)
\(548\) 142.915 5.58740i 0.260793 0.0101960i
\(549\) 310.548 + 580.994i 0.565661 + 1.05828i
\(550\) 270.643 118.350i 0.492078 0.215183i
\(551\) 283.449 + 189.395i 0.514427 + 0.343729i
\(552\) 267.006 + 237.406i 0.483707 + 0.430084i
\(553\) 66.6614 44.5417i 0.120545 0.0805456i
\(554\) −1.83401 8.36281i −0.00331048 0.0150953i
\(555\) −17.6323 14.4704i −0.0317699 0.0260728i
\(556\) −236.788 + 82.0594i −0.425877 + 0.147589i
\(557\) 364.972 682.815i 0.655246 1.22588i −0.306483 0.951876i \(-0.599152\pi\)
0.961729 0.274003i \(-0.0883478\pi\)
\(558\) −600.023 47.2813i −1.07531 0.0847336i
\(559\) −226.393 + 546.561i −0.404996 + 0.977747i
\(560\) 48.3736 + 123.735i 0.0863815 + 0.220955i
\(561\) 529.269 219.230i 0.943438 0.390785i
\(562\) 272.188 + 837.986i 0.484321 + 1.49108i
\(563\) 196.714 + 648.479i 0.349403 + 1.15183i 0.938938 + 0.344085i \(0.111811\pi\)
−0.589535 + 0.807743i \(0.700689\pi\)
\(564\) −384.001 + 224.967i −0.680853 + 0.398877i
\(565\) 49.5457 + 503.046i 0.0876915 + 0.890346i
\(566\) 188.785 1056.57i 0.333543 1.86674i
\(567\) −64.2171 + 322.841i −0.113258 + 0.569384i
\(568\) −212.979 + 885.987i −0.374963 + 1.55984i
\(569\) −2.08073 10.4606i −0.00365682 0.0183841i 0.978914 0.204274i \(-0.0654833\pi\)
−0.982571 + 0.185890i \(0.940483\pi\)
\(570\) 146.151 151.977i 0.256406 0.266626i
\(571\) 175.863 + 53.3475i 0.307992 + 0.0934283i 0.440497 0.897754i \(-0.354802\pi\)
−0.132505 + 0.991182i \(0.542302\pi\)
\(572\) −335.943 462.575i −0.587313 0.808697i
\(573\) 936.347 768.440i 1.63411 1.34108i
\(574\) 21.0694 + 178.162i 0.0367062 + 0.310387i
\(575\) −215.071 −0.374037
\(576\) −378.180 + 211.502i −0.656562 + 0.367191i
\(577\) 924.500i 1.60225i 0.598495 + 0.801127i \(0.295766\pi\)
−0.598495 + 0.801127i \(0.704234\pi\)
\(578\) 14.0704 + 118.979i 0.0243433 + 0.205846i
\(579\) −896.799 1092.75i −1.54888 1.88731i
\(580\) −298.102 47.2739i −0.513969 0.0815068i
\(581\) −25.5320 + 84.1677i −0.0439449 + 0.144867i
\(582\) 522.330 543.150i 0.897474 0.933248i
\(583\) 36.1563 7.19193i 0.0620176 0.0123361i
\(584\) −506.649 + 696.917i −0.867550 + 1.19335i
\(585\) 297.884 + 59.2529i 0.509204 + 0.101287i
\(586\) 95.7697 535.993i 0.163430 0.914663i
\(587\) −1049.71 + 103.388i −1.78827 + 0.176129i −0.937169 0.348877i \(-0.886563\pi\)
−0.851099 + 0.525006i \(0.824063\pi\)
\(588\) −572.762 149.579i −0.974085 0.254386i
\(589\) −465.832 + 141.308i −0.790885 + 0.239912i
\(590\) −99.8718 307.475i −0.169274 0.521144i
\(591\) 198.836 + 480.032i 0.336440 + 0.812237i
\(592\) 31.0947 + 21.6897i 0.0525248 + 0.0366380i
\(593\) 115.944 + 48.0256i 0.195521 + 0.0809875i 0.478296 0.878199i \(-0.341255\pi\)
−0.282774 + 0.959186i \(0.591255\pi\)
\(594\) 136.340 + 10.7435i 0.229529 + 0.0180867i
\(595\) −136.785 73.1133i −0.229891 0.122879i
\(596\) −220.717 + 454.829i −0.370331 + 0.763137i
\(597\) 56.7218 69.1157i 0.0950113 0.115772i
\(598\) 89.1664 + 406.586i 0.149108 + 0.679909i
\(599\) 33.6776 + 50.4021i 0.0562230 + 0.0841437i 0.858516 0.512787i \(-0.171387\pi\)
−0.802293 + 0.596930i \(0.796387\pi\)
\(600\) 199.221 573.967i 0.332035 0.956611i
\(601\) 595.083 890.604i 0.990154 1.48187i 0.117775 0.993040i \(-0.462424\pi\)
0.872379 0.488830i \(-0.162576\pi\)
\(602\) −200.656 + 87.7456i −0.333316 + 0.145757i
\(603\) −369.126 + 197.302i −0.612149 + 0.327201i
\(604\) 255.748 + 236.503i 0.423424 + 0.391561i
\(605\) −148.012 14.5780i −0.244649 0.0240958i
\(606\) 470.517 263.442i 0.776431 0.434723i
\(607\) 300.370 300.370i 0.494843 0.494843i −0.414985 0.909828i \(-0.636213\pi\)
0.909828 + 0.414985i \(0.136213\pi\)
\(608\) −222.454 + 270.793i −0.365878 + 0.445384i
\(609\) −299.414 + 299.414i −0.491649 + 0.491649i
\(610\) −454.016 128.093i −0.744289 0.209989i
\(611\) −515.994 50.8210i −0.844507 0.0831767i
\(612\) 175.177 474.555i 0.286237 0.775417i
\(613\) −430.988 + 230.368i −0.703079 + 0.375804i −0.783868 0.620928i \(-0.786756\pi\)
0.0807887 + 0.996731i \(0.474256\pi\)
\(614\) 34.7332 88.7172i 0.0565687 0.144491i
\(615\) −140.053 + 209.605i −0.227729 + 0.340820i
\(616\) 29.0576 209.632i 0.0471715 0.340311i
\(617\) 239.650 + 358.662i 0.388412 + 0.581300i 0.973221 0.229871i \(-0.0738304\pi\)
−0.584809 + 0.811171i \(0.698830\pi\)
\(618\) −692.744 + 1081.94i −1.12094 + 1.75071i
\(619\) −425.346 + 518.286i −0.687150 + 0.837295i −0.993405 0.114654i \(-0.963424\pi\)
0.306255 + 0.951949i \(0.400924\pi\)
\(620\) 322.228 286.228i 0.519723 0.461657i
\(621\) −87.8187 46.9401i −0.141415 0.0755879i
\(622\) 679.834 580.519i 1.09298 0.933311i
\(623\) 335.267 + 138.872i 0.538149 + 0.222909i
\(624\) −1167.66 138.661i −1.87125 0.222212i
\(625\) 83.7394 + 202.165i 0.133983 + 0.323464i
\(626\) −41.9743 + 82.3596i −0.0670517 + 0.131565i
\(627\) −321.416 + 97.5006i −0.512626 + 0.155503i
\(628\) −612.757 + 84.6335i −0.975727 + 0.134767i
\(629\) −44.0468 + 4.33823i −0.0700267 + 0.00689703i
\(630\) 64.2798 + 92.2477i 0.102031 + 0.146425i
\(631\) −708.522 140.934i −1.12286 0.223350i −0.401462 0.915876i \(-0.631498\pi\)
−0.721393 + 0.692526i \(0.756498\pi\)
\(632\) −187.097 7.40550i −0.296039 0.0117176i
\(633\) −1090.70 + 216.954i −1.72307 + 0.342739i
\(634\) −720.437 + 14.0777i −1.13634 + 0.0222046i
\(635\) −74.9484 + 247.072i −0.118029 + 0.389089i
\(636\) 39.6302 64.6425i 0.0623117 0.101639i
\(637\) −437.516 533.115i −0.686839 0.836916i
\(638\) 377.557 + 297.701i 0.591783 + 0.466617i
\(639\) 771.169i 1.20684i
\(640\) 78.5467 300.174i 0.122729 0.469021i
\(641\) 674.946 1.05296 0.526479 0.850188i \(-0.323512\pi\)
0.526479 + 0.850188i \(0.323512\pi\)
\(642\) 246.840 313.053i 0.384487 0.487622i
\(643\) 344.335 282.588i 0.535513 0.439484i −0.327364 0.944898i \(-0.606160\pi\)
0.862877 + 0.505414i \(0.168660\pi\)
\(644\) −80.5380 + 131.369i −0.125059 + 0.203989i
\(645\) −294.481 89.3298i −0.456560 0.138496i
\(646\) −7.99305 409.049i −0.0123731 0.633203i
\(647\) 14.3609 + 72.1971i 0.0221961 + 0.111587i 0.990295 0.138981i \(-0.0443826\pi\)
−0.968099 + 0.250568i \(0.919383\pi\)
\(648\) 564.671 521.673i 0.871407 0.805050i
\(649\) −100.470 + 505.099i −0.154808 + 0.778273i
\(650\) 580.736 404.667i 0.893440 0.622564i
\(651\) −59.2658 601.736i −0.0910381 0.924326i
\(652\) 1092.89 150.949i 1.67621 0.231518i
\(653\) 259.250 + 854.634i 0.397014 + 1.30878i 0.896725 + 0.442588i \(0.145940\pi\)
−0.499711 + 0.866192i \(0.666560\pi\)
\(654\) 1222.07 + 622.823i 1.86860 + 0.952329i
\(655\) 372.777 154.409i 0.569126 0.235740i
\(656\) 204.872 365.492i 0.312304 0.557153i
\(657\) −279.047 + 673.680i −0.424730 + 1.02539i
\(658\) −124.641 145.965i −0.189424 0.221831i
\(659\) 279.901 523.658i 0.424736 0.794625i −0.574987 0.818162i \(-0.694993\pi\)
0.999723 + 0.0235378i \(0.00749299\pi\)
\(660\) 222.333 197.493i 0.336867 0.299231i
\(661\) −214.224 175.809i −0.324090 0.265974i 0.458253 0.888822i \(-0.348475\pi\)
−0.782343 + 0.622848i \(0.785975\pi\)
\(662\) −552.205 353.565i −0.834147 0.534086i
\(663\) 1141.40 762.657i 1.72156 1.15031i
\(664\) 163.820 123.934i 0.246717 0.186647i
\(665\) 75.6098 + 50.5208i 0.113699 + 0.0759712i
\(666\) 29.8768 + 11.6969i 0.0448601 + 0.0175629i
\(667\) −165.024 308.738i −0.247412 0.462876i
\(668\) −200.026 + 541.872i −0.299441 + 0.811185i
\(669\) −98.7867 + 1003.00i −0.147663 + 1.49925i
\(670\) 81.3822 288.453i 0.121466 0.430526i
\(671\) 531.374 + 531.374i 0.791914 + 0.791914i
\(672\) −275.985 336.621i −0.410692 0.500924i
\(673\) −816.151 816.151i −1.21271 1.21271i −0.970133 0.242572i \(-0.922009\pi\)
−0.242572 0.970133i \(-0.577991\pi\)
\(674\) 98.4574 + 175.848i 0.146079 + 0.260902i
\(675\) −16.5970 + 168.512i −0.0245882 + 0.249648i
\(676\) −509.463 471.126i −0.753644 0.696932i
\(677\) 438.807 + 820.949i 0.648163 + 1.21263i 0.964525 + 0.263990i \(0.0850386\pi\)
−0.316362 + 0.948639i \(0.602461\pi\)
\(678\) −663.570 1517.45i −0.978717 2.23812i
\(679\) 270.222 + 180.557i 0.397971 + 0.265915i
\(680\) 157.987 + 325.964i 0.232334 + 0.479359i
\(681\) 1139.74 761.553i 1.67363 1.11829i
\(682\) −670.634 + 147.074i −0.983334 + 0.215650i
\(683\) −308.460 253.146i −0.451625 0.370639i 0.380909 0.924612i \(-0.375611\pi\)
−0.832534 + 0.553973i \(0.813111\pi\)
\(684\) −129.484 + 266.826i −0.189304 + 0.390097i
\(685\) −40.8582 + 76.4403i −0.0596470 + 0.111592i
\(686\) 46.4261 589.170i 0.0676766 0.858849i
\(687\) −552.775 + 1334.52i −0.804622 + 1.94253i
\(688\) 499.552 + 109.808i 0.726093 + 0.159605i
\(689\) 81.6121 33.8048i 0.118450 0.0490636i
\(690\) −205.931 + 66.8889i −0.298451 + 0.0969405i
\(691\) −324.662 1070.27i −0.469844 1.54887i −0.797049 0.603914i \(-0.793607\pi\)
0.327206 0.944953i \(-0.393893\pi\)
\(692\) −564.854 147.513i −0.816262 0.213170i
\(693\) −17.5556 178.245i −0.0253327 0.257207i
\(694\) 16.2578 + 2.90489i 0.0234262 + 0.00418573i
\(695\) 29.6283 148.952i 0.0426307 0.214319i
\(696\) 976.799 154.419i 1.40345 0.221866i
\(697\) 95.4285 + 479.751i 0.136913 + 0.688309i
\(698\) 568.617 + 546.821i 0.814637 + 0.783411i
\(699\) −829.485 251.622i −1.18667 0.359974i
\(700\) 258.795 + 41.0405i 0.369707 + 0.0586292i
\(701\) −880.474 + 722.586i −1.25603 + 1.03079i −0.258120 + 0.966113i \(0.583103\pi\)
−0.997906 + 0.0646809i \(0.979397\pi\)
\(702\) 325.448 38.4873i 0.463601 0.0548252i
\(703\) 25.9497 0.0369128
\(704\) −342.781 + 356.099i −0.486905 + 0.505823i
\(705\) 269.706i 0.382561i
\(706\) 162.838 19.2571i 0.230649 0.0272764i
\(707\) 147.539 + 179.777i 0.208684 + 0.254282i
\(708\) 622.444 + 857.069i 0.879158 + 1.21055i
\(709\) 336.349 1108.79i 0.474399 1.56388i −0.314436 0.949279i \(-0.601815\pi\)
0.788835 0.614605i \(-0.210685\pi\)
\(710\) −398.031 382.774i −0.560607 0.539118i
\(711\) −155.419 + 30.9147i −0.218592 + 0.0434806i
\(712\) −442.621 722.764i −0.621659 1.01512i
\(713\) 490.285 + 97.5238i 0.687637 + 0.136780i
\(714\) 500.256 + 89.3844i 0.700639 + 0.125188i
\(715\) 344.787 33.9586i 0.482220 0.0474945i
\(716\) 910.798 533.591i 1.27206 0.745238i
\(717\) −8.90843 + 2.70234i −0.0124246 + 0.00376896i
\(718\) −750.792 + 243.867i −1.04567 + 0.339647i
\(719\) −421.418 1017.39i −0.586117 1.41501i −0.887187 0.461410i \(-0.847344\pi\)
0.301070 0.953602i \(-0.402656\pi\)
\(720\) 5.25733 262.537i 0.00730185 0.364635i
\(721\) −511.898 212.035i −0.709983 0.294085i
\(722\) 37.8739 480.638i 0.0524569 0.665703i
\(723\) 517.824 + 276.783i 0.716216 + 0.382825i
\(724\) 442.115 153.216i 0.610657 0.211625i
\(725\) −377.650 + 460.168i −0.520896 + 0.634714i
\(726\) 475.994 104.388i 0.655639 0.143785i
\(727\) −226.678 339.247i −0.311799 0.466640i 0.642163 0.766568i \(-0.278037\pi\)
−0.953962 + 0.299928i \(0.903037\pi\)
\(728\) −29.7080 506.258i −0.0408076 0.695409i
\(729\) 185.641 277.832i 0.254652 0.381114i
\(730\) −209.206 478.412i −0.286584 0.655359i
\(731\) −526.611 + 281.479i −0.720398 + 0.385061i
\(732\) 1544.47 60.3825i 2.10993 0.0824898i
\(733\) −660.404 65.0441i −0.900961 0.0887369i −0.363080 0.931758i \(-0.618275\pi\)
−0.537881 + 0.843021i \(0.680775\pi\)
\(734\) −670.610 1197.73i −0.913637 1.63179i
\(735\) 253.670 253.670i 0.345130 0.345130i
\(736\) 332.551 137.559i 0.451836 0.186900i
\(737\) −337.601 + 337.601i −0.458074 + 0.458074i
\(738\) 96.2845 341.272i 0.130467 0.462429i
\(739\) −115.552 11.3808i −0.156362 0.0154003i 0.0195331 0.999809i \(-0.493782\pi\)
−0.175895 + 0.984409i \(0.556282\pi\)
\(740\) −20.8667 + 9.61480i −0.0281983 + 0.0129930i
\(741\) −709.810 + 379.401i −0.957909 + 0.512013i
\(742\) 30.4508 + 11.9216i 0.0410388 + 0.0160669i
\(743\) 221.939 332.156i 0.298707 0.447047i −0.651508 0.758642i \(-0.725863\pi\)
0.950215 + 0.311595i \(0.100863\pi\)
\(744\) −714.417 + 1218.10i −0.960238 + 1.63723i
\(745\) −170.213 254.741i −0.228473 0.341934i
\(746\) −145.140 92.9298i −0.194557 0.124571i
\(747\) 110.286 134.384i 0.147638 0.179898i
\(748\) 34.0819 576.025i 0.0455641 0.770086i
\(749\) 151.634 + 81.0502i 0.202449 + 0.108211i
\(750\) 551.651 + 646.027i 0.735535 + 0.861370i
\(751\) −182.510 75.5983i −0.243023 0.100663i 0.257848 0.966186i \(-0.416987\pi\)
−0.500871 + 0.865522i \(0.666987\pi\)
\(752\) 34.9981 + 446.907i 0.0465400 + 0.594291i
\(753\) −93.0980 224.759i −0.123636 0.298484i
\(754\)