Properties

Label 128.3.h.a
Level 128
Weight 3
Character orbit 128.h
Analytic conductor 3.488
Analytic rank 0
Dimension 28
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 128 = 2^{7} \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 128.h (of order \(8\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(3.48774738381\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{8})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(28q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(28q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut 4q^{11} \) \(\mathstrut -\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut -\mathstrut 4q^{21} \) \(\mathstrut +\mathstrut 68q^{23} \) \(\mathstrut -\mathstrut 4q^{25} \) \(\mathstrut +\mathstrut 100q^{27} \) \(\mathstrut -\mathstrut 4q^{29} \) \(\mathstrut -\mathstrut 8q^{33} \) \(\mathstrut -\mathstrut 92q^{35} \) \(\mathstrut -\mathstrut 4q^{37} \) \(\mathstrut -\mathstrut 188q^{39} \) \(\mathstrut -\mathstrut 4q^{41} \) \(\mathstrut -\mathstrut 92q^{43} \) \(\mathstrut -\mathstrut 40q^{45} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut -\mathstrut 224q^{51} \) \(\mathstrut -\mathstrut 164q^{53} \) \(\mathstrut -\mathstrut 252q^{55} \) \(\mathstrut -\mathstrut 4q^{57} \) \(\mathstrut -\mathstrut 124q^{59} \) \(\mathstrut -\mathstrut 68q^{61} \) \(\mathstrut -\mathstrut 8q^{65} \) \(\mathstrut +\mathstrut 164q^{67} \) \(\mathstrut +\mathstrut 188q^{69} \) \(\mathstrut +\mathstrut 260q^{71} \) \(\mathstrut -\mathstrut 4q^{73} \) \(\mathstrut +\mathstrut 488q^{75} \) \(\mathstrut +\mathstrut 220q^{77} \) \(\mathstrut +\mathstrut 520q^{79} \) \(\mathstrut +\mathstrut 484q^{83} \) \(\mathstrut +\mathstrut 96q^{85} \) \(\mathstrut +\mathstrut 452q^{87} \) \(\mathstrut -\mathstrut 4q^{89} \) \(\mathstrut +\mathstrut 196q^{91} \) \(\mathstrut +\mathstrut 32q^{93} \) \(\mathstrut -\mathstrut 8q^{97} \) \(\mathstrut -\mathstrut 216q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
15.1 0 −4.35131 + 1.80237i 0 −2.81639 1.16659i 0 6.23443 6.23443i 0 9.32143 9.32143i 0
15.2 0 −2.49683 + 1.03422i 0 −0.452310 0.187353i 0 −0.429965 + 0.429965i 0 −1.19943 + 1.19943i 0
15.3 0 −1.58190 + 0.655246i 0 4.18866 + 1.73500i 0 −3.93197 + 3.93197i 0 −4.29089 + 4.29089i 0
15.4 0 0.374985 0.155324i 0 −7.60625 3.15061i 0 −6.84161 + 6.84161i 0 −6.24747 + 6.24747i 0
15.5 0 1.37292 0.568682i 0 2.28872 + 0.948019i 0 6.37744 6.37744i 0 −4.80245 + 4.80245i 0
15.6 0 3.70255 1.53365i 0 7.20074 + 2.98264i 0 −4.26150 + 4.26150i 0 4.99283 4.99283i 0
15.7 0 4.68670 1.94129i 0 −4.51028 1.86822i 0 3.85317 3.85317i 0 11.8326 11.8326i 0
47.1 0 −2.10187 + 5.07436i 0 1.74699 + 4.21761i 0 0.392379 + 0.392379i 0 −14.9674 14.9674i 0
47.2 0 −0.936461 + 2.26082i 0 −3.18221 7.68254i 0 −3.67370 3.67370i 0 2.12963 + 2.12963i 0
47.3 0 −0.527719 + 1.27403i 0 −0.642823 1.55191i 0 4.95044 + 4.95044i 0 5.01930 + 5.01930i 0
47.4 0 −0.299792 + 0.723762i 0 1.34740 + 3.25291i 0 −0.583225 0.583225i 0 5.93000 + 5.93000i 0
47.5 0 1.10785 2.67458i 0 2.95565 + 7.13556i 0 4.18452 + 4.18452i 0 0.437918 + 0.437918i 0
47.6 0 1.31872 3.18367i 0 −0.659338 1.59178i 0 −9.54718 9.54718i 0 −2.03276 2.03276i 0
47.7 0 1.73217 4.18183i 0 −1.85856 4.48696i 0 5.27676 + 5.27676i 0 −8.12333 8.12333i 0
79.1 0 −2.10187 5.07436i 0 1.74699 4.21761i 0 0.392379 0.392379i 0 −14.9674 + 14.9674i 0
79.2 0 −0.936461 2.26082i 0 −3.18221 + 7.68254i 0 −3.67370 + 3.67370i 0 2.12963 2.12963i 0
79.3 0 −0.527719 1.27403i 0 −0.642823 + 1.55191i 0 4.95044 4.95044i 0 5.01930 5.01930i 0
79.4 0 −0.299792 0.723762i 0 1.34740 3.25291i 0 −0.583225 + 0.583225i 0 5.93000 5.93000i 0
79.5 0 1.10785 + 2.67458i 0 2.95565 7.13556i 0 4.18452 4.18452i 0 0.437918 0.437918i 0
79.6 0 1.31872 + 3.18367i 0 −0.659338 + 1.59178i 0 −9.54718 + 9.54718i 0 −2.03276 + 2.03276i 0
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 111.7
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{3}^{\mathrm{new}}(128, [\chi])\).