Properties

Label 128.2.a.b
Level 128
Weight 2
Character orbit 128.a
Self dual Yes
Analytic conductor 1.022
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 128 = 2^{7} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 128.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(1.02208514587\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut 2q^{11} \) \(\mathstrut +\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut -\mathstrut 2q^{17} \) \(\mathstrut -\mathstrut 2q^{19} \) \(\mathstrut -\mathstrut 8q^{21} \) \(\mathstrut -\mathstrut 4q^{23} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 4q^{33} \) \(\mathstrut +\mathstrut 8q^{35} \) \(\mathstrut +\mathstrut 10q^{37} \) \(\mathstrut -\mathstrut 4q^{39} \) \(\mathstrut -\mathstrut 6q^{41} \) \(\mathstrut -\mathstrut 6q^{43} \) \(\mathstrut +\mathstrut 2q^{45} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut +\mathstrut 9q^{49} \) \(\mathstrut +\mathstrut 4q^{51} \) \(\mathstrut -\mathstrut 6q^{53} \) \(\mathstrut +\mathstrut 4q^{55} \) \(\mathstrut +\mathstrut 4q^{57} \) \(\mathstrut -\mathstrut 14q^{59} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut +\mathstrut 4q^{63} \) \(\mathstrut +\mathstrut 4q^{65} \) \(\mathstrut -\mathstrut 10q^{67} \) \(\mathstrut +\mathstrut 8q^{69} \) \(\mathstrut -\mathstrut 12q^{71} \) \(\mathstrut +\mathstrut 14q^{73} \) \(\mathstrut +\mathstrut 2q^{75} \) \(\mathstrut +\mathstrut 8q^{77} \) \(\mathstrut +\mathstrut 8q^{79} \) \(\mathstrut -\mathstrut 11q^{81} \) \(\mathstrut +\mathstrut 6q^{83} \) \(\mathstrut -\mathstrut 4q^{85} \) \(\mathstrut +\mathstrut 12q^{87} \) \(\mathstrut -\mathstrut 2q^{89} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 4q^{95} \) \(\mathstrut -\mathstrut 2q^{97} \) \(\mathstrut +\mathstrut 2q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −2.00000 0 2.00000 0 4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(128))\):

\(T_{3} \) \(\mathstrut +\mathstrut 2 \)
\(T_{5} \) \(\mathstrut -\mathstrut 2 \)