Defining parameters
Level: | \( N \) | = | \( 128 = 2^{7} \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(1024\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(128))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 81 | 25 | 56 |
Cusp forms | 1 | 1 | 0 |
Eisenstein series | 80 | 24 | 56 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 1 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(128))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
128.1.c | \(\chi_{128}(127, \cdot)\) | None | 0 | 1 |
128.1.d | \(\chi_{128}(63, \cdot)\) | 128.1.d.a | 1 | 1 |
128.1.f | \(\chi_{128}(31, \cdot)\) | None | 0 | 2 |
128.1.h | \(\chi_{128}(15, \cdot)\) | None | 0 | 4 |
128.1.j | \(\chi_{128}(7, \cdot)\) | None | 0 | 8 |
128.1.l | \(\chi_{128}(3, \cdot)\) | None | 0 | 16 |