Properties

Label 126.2.t
Level 126
Weight 2
Character orbit t
Rep. character \(\chi_{126}(47,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 16
Newforms 1
Sturm bound 48
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 126.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newforms: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(126, [\chi])\).

Total New Old
Modular forms 56 16 40
Cusp forms 40 16 24
Eisenstein series 16 0 16

Trace form

\(16q \) \(\mathstrut +\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut +\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 6q^{9} \) \(\mathstrut -\mathstrut 6q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut -\mathstrut 18q^{15} \) \(\mathstrut -\mathstrut 8q^{16} \) \(\mathstrut +\mathstrut 18q^{17} \) \(\mathstrut +\mathstrut 12q^{18} \) \(\mathstrut -\mathstrut 18q^{21} \) \(\mathstrut -\mathstrut 6q^{24} \) \(\mathstrut +\mathstrut 16q^{25} \) \(\mathstrut -\mathstrut 12q^{26} \) \(\mathstrut -\mathstrut 36q^{27} \) \(\mathstrut -\mathstrut 2q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 18q^{30} \) \(\mathstrut +\mathstrut 6q^{31} \) \(\mathstrut +\mathstrut 18q^{33} \) \(\mathstrut -\mathstrut 30q^{35} \) \(\mathstrut -\mathstrut 2q^{37} \) \(\mathstrut -\mathstrut 30q^{39} \) \(\mathstrut +\mathstrut 6q^{41} \) \(\mathstrut +\mathstrut 30q^{42} \) \(\mathstrut -\mathstrut 2q^{43} \) \(\mathstrut +\mathstrut 12q^{44} \) \(\mathstrut +\mathstrut 12q^{45} \) \(\mathstrut +\mathstrut 6q^{46} \) \(\mathstrut -\mathstrut 18q^{47} \) \(\mathstrut +\mathstrut 10q^{49} \) \(\mathstrut -\mathstrut 12q^{50} \) \(\mathstrut +\mathstrut 36q^{53} \) \(\mathstrut +\mathstrut 18q^{54} \) \(\mathstrut +\mathstrut 6q^{57} \) \(\mathstrut -\mathstrut 12q^{58} \) \(\mathstrut +\mathstrut 30q^{59} \) \(\mathstrut -\mathstrut 6q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 36q^{62} \) \(\mathstrut +\mathstrut 42q^{63} \) \(\mathstrut -\mathstrut 16q^{64} \) \(\mathstrut +\mathstrut 42q^{65} \) \(\mathstrut +\mathstrut 48q^{66} \) \(\mathstrut +\mathstrut 14q^{67} \) \(\mathstrut +\mathstrut 36q^{68} \) \(\mathstrut +\mathstrut 42q^{69} \) \(\mathstrut +\mathstrut 30q^{75} \) \(\mathstrut -\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 16q^{79} \) \(\mathstrut +\mathstrut 54q^{81} \) \(\mathstrut -\mathstrut 18q^{84} \) \(\mathstrut -\mathstrut 12q^{85} \) \(\mathstrut -\mathstrut 48q^{87} \) \(\mathstrut +\mathstrut 24q^{89} \) \(\mathstrut -\mathstrut 18q^{90} \) \(\mathstrut -\mathstrut 12q^{91} \) \(\mathstrut +\mathstrut 6q^{92} \) \(\mathstrut +\mathstrut 30q^{93} \) \(\mathstrut -\mathstrut 66q^{95} \) \(\mathstrut -\mathstrut 6q^{96} \) \(\mathstrut -\mathstrut 6q^{97} \) \(\mathstrut +\mathstrut 24q^{98} \) \(\mathstrut +\mathstrut 18q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(126, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
126.2.t.a \(16\) \(1.006\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(2\) \(q+(-\beta _{1}+\beta _{6})q^{2}+(-\beta _{11}-\beta _{14})q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(126, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)