Properties

Label 1205.2.k
Level $1205$
Weight $2$
Character orbit 1205.k
Rep. character $\chi_{1205}(64,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $240$
Sturm bound $242$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1205 = 5 \cdot 241 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1205.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1205 \)
Character field: \(\Q(i)\)
Sturm bound: \(242\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1205, [\chi])\).

Total New Old
Modular forms 248 248 0
Cusp forms 240 240 0
Eisenstein series 8 8 0

Trace form

\( 240q + 240q^{4} - 32q^{6} + 240q^{9} + O(q^{10}) \) \( 240q + 240q^{4} - 32q^{6} + 240q^{9} - 20q^{10} - 4q^{14} - 16q^{15} + 224q^{16} - 8q^{19} - 12q^{21} - 104q^{24} + 24q^{25} + 12q^{26} - 4q^{31} - 32q^{34} - 2q^{35} + 224q^{36} - 44q^{40} - 44q^{44} + 16q^{46} - 176q^{54} + 34q^{55} - 32q^{56} - 92q^{60} + 232q^{64} - 32q^{65} + 76q^{66} - 20q^{69} + 24q^{70} - 36q^{71} - 68q^{74} - 112q^{76} + 176q^{81} - 128q^{84} - 26q^{85} + 12q^{86} - 180q^{90} + 16q^{91} - 120q^{94} - 44q^{95} - 104q^{96} - 24q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1205, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.