Properties

Label 1200.1.c
Level 1200
Weight 1
Character orbit c
Rep. character \(\chi_{1200}(449,\cdot)\)
Character field \(\Q\)
Dimension 2
Newform subspaces 1
Sturm bound 240
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1200.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1200, [\chi])\).

Total New Old
Modular forms 44 4 40
Cusp forms 8 2 6
Eisenstein series 36 2 34

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} - 2q^{19} - 2q^{21} + 2q^{31} - 2q^{39} - 2q^{61} + 4q^{79} + 2q^{81} - 2q^{91} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1200.1.c.a \(2\) \(0.599\) \(\Q(\sqrt{-1}) \) \(D_{3}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(0\) \(q-iq^{3}-iq^{7}-q^{9}-iq^{13}-q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1200, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T^{2} \)
$5$ 1
$7$ \( 1 - T^{2} + T^{4} \)
$11$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$13$ \( 1 - T^{2} + T^{4} \)
$17$ \( ( 1 + T^{2} )^{2} \)
$19$ \( ( 1 + T + T^{2} )^{2} \)
$23$ \( ( 1 + T^{2} )^{2} \)
$29$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$31$ \( ( 1 - T + T^{2} )^{2} \)
$37$ \( ( 1 + T^{2} )^{2} \)
$41$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$43$ \( 1 - T^{2} + T^{4} \)
$47$ \( ( 1 + T^{2} )^{2} \)
$53$ \( ( 1 + T^{2} )^{2} \)
$59$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$61$ \( ( 1 + T + T^{2} )^{2} \)
$67$ \( 1 - T^{2} + T^{4} \)
$71$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$73$ \( ( 1 + T^{2} )^{2} \)
$79$ \( ( 1 - T )^{4} \)
$83$ \( ( 1 + T^{2} )^{2} \)
$89$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$97$ \( 1 - T^{2} + T^{4} \)
show more
show less