Properties

Label 120.2.a
Level 120
Weight 2
Character orbit a
Rep. character \(\chi_{120}(1,\cdot)\)
Character field \(\Q\)
Dimension 2
Newforms 2
Sturm bound 48
Trace bound 5

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 120.a (trivial)
Character field: \(\Q\)
Newforms: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(120))\).

Total New Old
Modular forms 32 2 30
Cusp forms 17 2 15
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim.
\(+\)\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(2\)

Trace form

\(2q \) \(\mathstrut +\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut +\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut -\mathstrut 4q^{11} \) \(\mathstrut -\mathstrut 8q^{17} \) \(\mathstrut +\mathstrut 4q^{21} \) \(\mathstrut -\mathstrut 8q^{23} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 2q^{27} \) \(\mathstrut -\mathstrut 8q^{29} \) \(\mathstrut -\mathstrut 8q^{31} \) \(\mathstrut -\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 4q^{35} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 4q^{41} \) \(\mathstrut +\mathstrut 8q^{43} \) \(\mathstrut +\mathstrut 16q^{47} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut -\mathstrut 8q^{51} \) \(\mathstrut +\mathstrut 16q^{53} \) \(\mathstrut -\mathstrut 4q^{55} \) \(\mathstrut +\mathstrut 12q^{59} \) \(\mathstrut +\mathstrut 20q^{61} \) \(\mathstrut +\mathstrut 4q^{63} \) \(\mathstrut +\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 8q^{69} \) \(\mathstrut +\mathstrut 8q^{71} \) \(\mathstrut -\mathstrut 20q^{73} \) \(\mathstrut +\mathstrut 2q^{75} \) \(\mathstrut +\mathstrut 8q^{79} \) \(\mathstrut +\mathstrut 2q^{81} \) \(\mathstrut -\mathstrut 4q^{85} \) \(\mathstrut -\mathstrut 8q^{87} \) \(\mathstrut +\mathstrut 12q^{89} \) \(\mathstrut -\mathstrut 24q^{91} \) \(\mathstrut -\mathstrut 8q^{93} \) \(\mathstrut -\mathstrut 8q^{95} \) \(\mathstrut +\mathstrut 4q^{97} \) \(\mathstrut -\mathstrut 4q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(120))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 5
120.2.a.a \(1\) \(0.958\) \(\Q\) None \(0\) \(1\) \(-1\) \(4\) \(+\) \(-\) \(+\) \(q+q^{3}-q^{5}+4q^{7}+q^{9}-6q^{13}-q^{15}+\cdots\)
120.2.a.b \(1\) \(0.958\) \(\Q\) None \(0\) \(1\) \(1\) \(0\) \(-\) \(-\) \(-\) \(q+q^{3}+q^{5}+q^{9}-4q^{11}+6q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(120))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(120)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)