Related objects

Learn more about

Show commands for: Magma / SageMath

Decomposition of \( S_{12}^{\mathrm{new}}(12) \) into irreducible Hecke orbits

magma: S := CuspForms(12,12);
magma: N := Newforms(S);
sage: N = Newforms(12,12,names="a")
Label Dimension Field $q$-expansion of eigenform
12.12.1.a 1 \(\Q\) \(q \) \(\mathstrut-\) \(243q^{3} \) \(\mathstrut+\) \(9990q^{5} \) \(\mathstrut-\) \(86128q^{7} \) \(\mathstrut+\) \(59049q^{9} \) \(\mathstrut+O(q^{10}) \)
12.12.1.b 1 \(\Q\) \(q \) \(\mathstrut+\) \(243q^{3} \) \(\mathstrut+\) \(2862q^{5} \) \(\mathstrut+\) \(9128q^{7} \) \(\mathstrut+\) \(59049q^{9} \) \(\mathstrut+O(q^{10}) \)

Decomposition of \( S_{12}^{\mathrm{old}}(12) \) into lower level spaces

\( S_{12}^{\mathrm{old}}(12) \) \(\cong\) $ \href{ /ModularForm/GL2/Q/holomorphic/6/12/1/ }{ S^{ new }_{ 12 }(\Gamma_0(6)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/4/12/1/ }{ S^{ new }_{ 12 }(\Gamma_0(4)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/3/12/1/ }{ S^{ new }_{ 12 }(\Gamma_0(3)) }^{\oplus 3 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/1/12/1/ }{ S^{ new }_{ 12 }(\Gamma_0(1)) }^{\oplus 6 } $