Properties

Label 1155.2.a.r
Level 1155
Weight 2
Character orbit 1155.a
Self dual Yes
Analytic conductor 9.223
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1155 = 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1155.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(9.22272143346\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( + ( 1 + \beta ) q^{2} \) \(- q^{3}\) \( + ( 2 + 2 \beta ) q^{4} \) \(- q^{5}\) \( + ( -1 - \beta ) q^{6} \) \(+ q^{7}\) \( + ( 6 + 2 \beta ) q^{8} \) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \( + ( 1 + \beta ) q^{2} \) \(- q^{3}\) \( + ( 2 + 2 \beta ) q^{4} \) \(- q^{5}\) \( + ( -1 - \beta ) q^{6} \) \(+ q^{7}\) \( + ( 6 + 2 \beta ) q^{8} \) \(+ q^{9}\) \( + ( -1 - \beta ) q^{10} \) \(- q^{11}\) \( + ( -2 - 2 \beta ) q^{12} \) \( + ( 1 + 3 \beta ) q^{13} \) \( + ( 1 + \beta ) q^{14} \) \(+ q^{15}\) \( + ( 8 + 4 \beta ) q^{16} \) \( + ( -3 + 2 \beta ) q^{17} \) \( + ( 1 + \beta ) q^{18} \) \( + ( -5 - 2 \beta ) q^{19} \) \( + ( -2 - 2 \beta ) q^{20} \) \(- q^{21}\) \( + ( -1 - \beta ) q^{22} \) \( + ( 5 - 2 \beta ) q^{23} \) \( + ( -6 - 2 \beta ) q^{24} \) \(+ q^{25}\) \( + ( 10 + 4 \beta ) q^{26} \) \(- q^{27}\) \( + ( 2 + 2 \beta ) q^{28} \) \( + ( 4 - \beta ) q^{29} \) \( + ( 1 + \beta ) q^{30} \) \( + ( -7 - \beta ) q^{31} \) \( + ( 8 + 8 \beta ) q^{32} \) \(+ q^{33}\) \( + ( 3 - \beta ) q^{34} \) \(- q^{35}\) \( + ( 2 + 2 \beta ) q^{36} \) \( + ( 1 + 3 \beta ) q^{37} \) \( + ( -11 - 7 \beta ) q^{38} \) \( + ( -1 - 3 \beta ) q^{39} \) \( + ( -6 - 2 \beta ) q^{40} \) \( + ( 1 + 5 \beta ) q^{41} \) \( + ( -1 - \beta ) q^{42} \) \( -\beta q^{43} \) \( + ( -2 - 2 \beta ) q^{44} \) \(- q^{45}\) \( + ( -1 + 3 \beta ) q^{46} \) \( + ( 3 + \beta ) q^{47} \) \( + ( -8 - 4 \beta ) q^{48} \) \(+ q^{49}\) \( + ( 1 + \beta ) q^{50} \) \( + ( 3 - 2 \beta ) q^{51} \) \( + ( 20 + 8 \beta ) q^{52} \) \( + ( 1 - 2 \beta ) q^{53} \) \( + ( -1 - \beta ) q^{54} \) \(+ q^{55}\) \( + ( 6 + 2 \beta ) q^{56} \) \( + ( 5 + 2 \beta ) q^{57} \) \( + ( 1 + 3 \beta ) q^{58} \) \( + ( 12 - \beta ) q^{59} \) \( + ( 2 + 2 \beta ) q^{60} \) \( + ( 1 - 6 \beta ) q^{61} \) \( + ( -10 - 8 \beta ) q^{62} \) \(+ q^{63}\) \( + ( 16 + 8 \beta ) q^{64} \) \( + ( -1 - 3 \beta ) q^{65} \) \( + ( 1 + \beta ) q^{66} \) \( + ( -2 - 4 \beta ) q^{67} \) \( + ( 6 - 2 \beta ) q^{68} \) \( + ( -5 + 2 \beta ) q^{69} \) \( + ( -1 - \beta ) q^{70} \) \( + ( -1 - 5 \beta ) q^{71} \) \( + ( 6 + 2 \beta ) q^{72} \) \( + ( -2 - 6 \beta ) q^{73} \) \( + ( 10 + 4 \beta ) q^{74} \) \(- q^{75}\) \( + ( -22 - 14 \beta ) q^{76} \) \(- q^{77}\) \( + ( -10 - 4 \beta ) q^{78} \) \( + ( -5 - 5 \beta ) q^{79} \) \( + ( -8 - 4 \beta ) q^{80} \) \(+ q^{81}\) \( + ( 16 + 6 \beta ) q^{82} \) \( + ( -1 - 2 \beta ) q^{83} \) \( + ( -2 - 2 \beta ) q^{84} \) \( + ( 3 - 2 \beta ) q^{85} \) \( + ( -3 - \beta ) q^{86} \) \( + ( -4 + \beta ) q^{87} \) \( + ( -6 - 2 \beta ) q^{88} \) \( + ( 6 - 5 \beta ) q^{89} \) \( + ( -1 - \beta ) q^{90} \) \( + ( 1 + 3 \beta ) q^{91} \) \( + ( -2 + 6 \beta ) q^{92} \) \( + ( 7 + \beta ) q^{93} \) \( + ( 6 + 4 \beta ) q^{94} \) \( + ( 5 + 2 \beta ) q^{95} \) \( + ( -8 - 8 \beta ) q^{96} \) \( + ( -4 - \beta ) q^{97} \) \( + ( 1 + \beta ) q^{98} \) \(- q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut +\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 2q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 12q^{8} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut +\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 2q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 12q^{8} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 2q^{11} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut +\mathstrut 2q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 2q^{15} \) \(\mathstrut +\mathstrut 16q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut +\mathstrut 2q^{18} \) \(\mathstrut -\mathstrut 10q^{19} \) \(\mathstrut -\mathstrut 4q^{20} \) \(\mathstrut -\mathstrut 2q^{21} \) \(\mathstrut -\mathstrut 2q^{22} \) \(\mathstrut +\mathstrut 10q^{23} \) \(\mathstrut -\mathstrut 12q^{24} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 20q^{26} \) \(\mathstrut -\mathstrut 2q^{27} \) \(\mathstrut +\mathstrut 4q^{28} \) \(\mathstrut +\mathstrut 8q^{29} \) \(\mathstrut +\mathstrut 2q^{30} \) \(\mathstrut -\mathstrut 14q^{31} \) \(\mathstrut +\mathstrut 16q^{32} \) \(\mathstrut +\mathstrut 2q^{33} \) \(\mathstrut +\mathstrut 6q^{34} \) \(\mathstrut -\mathstrut 2q^{35} \) \(\mathstrut +\mathstrut 4q^{36} \) \(\mathstrut +\mathstrut 2q^{37} \) \(\mathstrut -\mathstrut 22q^{38} \) \(\mathstrut -\mathstrut 2q^{39} \) \(\mathstrut -\mathstrut 12q^{40} \) \(\mathstrut +\mathstrut 2q^{41} \) \(\mathstrut -\mathstrut 2q^{42} \) \(\mathstrut -\mathstrut 4q^{44} \) \(\mathstrut -\mathstrut 2q^{45} \) \(\mathstrut -\mathstrut 2q^{46} \) \(\mathstrut +\mathstrut 6q^{47} \) \(\mathstrut -\mathstrut 16q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 2q^{50} \) \(\mathstrut +\mathstrut 6q^{51} \) \(\mathstrut +\mathstrut 40q^{52} \) \(\mathstrut +\mathstrut 2q^{53} \) \(\mathstrut -\mathstrut 2q^{54} \) \(\mathstrut +\mathstrut 2q^{55} \) \(\mathstrut +\mathstrut 12q^{56} \) \(\mathstrut +\mathstrut 10q^{57} \) \(\mathstrut +\mathstrut 2q^{58} \) \(\mathstrut +\mathstrut 24q^{59} \) \(\mathstrut +\mathstrut 4q^{60} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut -\mathstrut 20q^{62} \) \(\mathstrut +\mathstrut 2q^{63} \) \(\mathstrut +\mathstrut 32q^{64} \) \(\mathstrut -\mathstrut 2q^{65} \) \(\mathstrut +\mathstrut 2q^{66} \) \(\mathstrut -\mathstrut 4q^{67} \) \(\mathstrut +\mathstrut 12q^{68} \) \(\mathstrut -\mathstrut 10q^{69} \) \(\mathstrut -\mathstrut 2q^{70} \) \(\mathstrut -\mathstrut 2q^{71} \) \(\mathstrut +\mathstrut 12q^{72} \) \(\mathstrut -\mathstrut 4q^{73} \) \(\mathstrut +\mathstrut 20q^{74} \) \(\mathstrut -\mathstrut 2q^{75} \) \(\mathstrut -\mathstrut 44q^{76} \) \(\mathstrut -\mathstrut 2q^{77} \) \(\mathstrut -\mathstrut 20q^{78} \) \(\mathstrut -\mathstrut 10q^{79} \) \(\mathstrut -\mathstrut 16q^{80} \) \(\mathstrut +\mathstrut 2q^{81} \) \(\mathstrut +\mathstrut 32q^{82} \) \(\mathstrut -\mathstrut 2q^{83} \) \(\mathstrut -\mathstrut 4q^{84} \) \(\mathstrut +\mathstrut 6q^{85} \) \(\mathstrut -\mathstrut 6q^{86} \) \(\mathstrut -\mathstrut 8q^{87} \) \(\mathstrut -\mathstrut 12q^{88} \) \(\mathstrut +\mathstrut 12q^{89} \) \(\mathstrut -\mathstrut 2q^{90} \) \(\mathstrut +\mathstrut 2q^{91} \) \(\mathstrut -\mathstrut 4q^{92} \) \(\mathstrut +\mathstrut 14q^{93} \) \(\mathstrut +\mathstrut 12q^{94} \) \(\mathstrut +\mathstrut 10q^{95} \) \(\mathstrut -\mathstrut 16q^{96} \) \(\mathstrut -\mathstrut 8q^{97} \) \(\mathstrut +\mathstrut 2q^{98} \) \(\mathstrut -\mathstrut 2q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−0.732051 −1.00000 −1.46410 −1.00000 0.732051 1.00000 2.53590 1.00000 0.732051
1.2 2.73205 −1.00000 5.46410 −1.00000 −2.73205 1.00000 9.46410 1.00000 −2.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)
\(11\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1155))\):

\(T_{2}^{2} \) \(\mathstrut -\mathstrut 2 T_{2} \) \(\mathstrut -\mathstrut 2 \)
\(T_{13}^{2} \) \(\mathstrut -\mathstrut 2 T_{13} \) \(\mathstrut -\mathstrut 26 \)
\(T_{17}^{2} \) \(\mathstrut +\mathstrut 6 T_{17} \) \(\mathstrut -\mathstrut 3 \)