Properties

Label 1155.2.a.p
Level 1155
Weight 2
Character orbit 1155.a
Self dual Yes
Analytic conductor 9.223
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1155 = 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1155.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(9.22272143346\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( + \beta q^{2} \) \(- q^{3}\) \(- q^{5}\) \( -\beta q^{6} \) \(- q^{7}\) \( -2 \beta q^{8} \) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \( + \beta q^{2} \) \(- q^{3}\) \(- q^{5}\) \( -\beta q^{6} \) \(- q^{7}\) \( -2 \beta q^{8} \) \(+ q^{9}\) \( -\beta q^{10} \) \(+ q^{11}\) \( + ( 2 + \beta ) q^{13} \) \( -\beta q^{14} \) \(+ q^{15}\) \( -4 q^{16} \) \( + ( 1 + 2 \beta ) q^{17} \) \( + \beta q^{18} \) \( + ( -1 + 2 \beta ) q^{19} \) \(+ q^{21}\) \( + \beta q^{22} \) \( + ( -1 + 2 \beta ) q^{23} \) \( + 2 \beta q^{24} \) \(+ q^{25}\) \( + ( 2 + 2 \beta ) q^{26} \) \(- q^{27}\) \( + ( 3 + 3 \beta ) q^{29} \) \( + \beta q^{30} \) \( + ( 2 + \beta ) q^{31} \) \(- q^{33}\) \( + ( 4 + \beta ) q^{34} \) \(+ q^{35}\) \( + ( -2 + 3 \beta ) q^{37} \) \( + ( 4 - \beta ) q^{38} \) \( + ( -2 - \beta ) q^{39} \) \( + 2 \beta q^{40} \) \( + ( 4 - 5 \beta ) q^{41} \) \( + \beta q^{42} \) \( + ( -5 + \beta ) q^{43} \) \(- q^{45}\) \( + ( 4 - \beta ) q^{46} \) \( + ( 6 + 3 \beta ) q^{47} \) \( + 4 q^{48} \) \(+ q^{49}\) \( + \beta q^{50} \) \( + ( -1 - 2 \beta ) q^{51} \) \( + ( 3 - 4 \beta ) q^{53} \) \( -\beta q^{54} \) \(- q^{55}\) \( + 2 \beta q^{56} \) \( + ( 1 - 2 \beta ) q^{57} \) \( + ( 6 + 3 \beta ) q^{58} \) \( + ( 13 - \beta ) q^{59} \) \( + ( 5 - 4 \beta ) q^{61} \) \( + ( 2 + 2 \beta ) q^{62} \) \(- q^{63}\) \( + 8 q^{64} \) \( + ( -2 - \beta ) q^{65} \) \( -\beta q^{66} \) \( -6 q^{67} \) \( + ( 1 - 2 \beta ) q^{69} \) \( + \beta q^{70} \) \( + ( -4 - 5 \beta ) q^{71} \) \( -2 \beta q^{72} \) \( + 6 \beta q^{73} \) \( + ( 6 - 2 \beta ) q^{74} \) \(- q^{75}\) \(- q^{77}\) \( + ( -2 - 2 \beta ) q^{78} \) \( + ( -4 + 3 \beta ) q^{79} \) \( + 4 q^{80} \) \(+ q^{81}\) \( + ( -10 + 4 \beta ) q^{82} \) \( + ( 3 - 10 \beta ) q^{83} \) \( + ( -1 - 2 \beta ) q^{85} \) \( + ( 2 - 5 \beta ) q^{86} \) \( + ( -3 - 3 \beta ) q^{87} \) \( -2 \beta q^{88} \) \( + ( 7 + 5 \beta ) q^{89} \) \( -\beta q^{90} \) \( + ( -2 - \beta ) q^{91} \) \( + ( -2 - \beta ) q^{93} \) \( + ( 6 + 6 \beta ) q^{94} \) \( + ( 1 - 2 \beta ) q^{95} \) \( + ( -3 + 3 \beta ) q^{97} \) \( + \beta q^{98} \) \(+ q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut 2q^{11} \) \(\mathstrut +\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 2q^{15} \) \(\mathstrut -\mathstrut 8q^{16} \) \(\mathstrut +\mathstrut 2q^{17} \) \(\mathstrut -\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 2q^{21} \) \(\mathstrut -\mathstrut 2q^{23} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut -\mathstrut 2q^{27} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut +\mathstrut 4q^{31} \) \(\mathstrut -\mathstrut 2q^{33} \) \(\mathstrut +\mathstrut 8q^{34} \) \(\mathstrut +\mathstrut 2q^{35} \) \(\mathstrut -\mathstrut 4q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 4q^{39} \) \(\mathstrut +\mathstrut 8q^{41} \) \(\mathstrut -\mathstrut 10q^{43} \) \(\mathstrut -\mathstrut 2q^{45} \) \(\mathstrut +\mathstrut 8q^{46} \) \(\mathstrut +\mathstrut 12q^{47} \) \(\mathstrut +\mathstrut 8q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut -\mathstrut 2q^{51} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 2q^{55} \) \(\mathstrut +\mathstrut 2q^{57} \) \(\mathstrut +\mathstrut 12q^{58} \) \(\mathstrut +\mathstrut 26q^{59} \) \(\mathstrut +\mathstrut 10q^{61} \) \(\mathstrut +\mathstrut 4q^{62} \) \(\mathstrut -\mathstrut 2q^{63} \) \(\mathstrut +\mathstrut 16q^{64} \) \(\mathstrut -\mathstrut 4q^{65} \) \(\mathstrut -\mathstrut 12q^{67} \) \(\mathstrut +\mathstrut 2q^{69} \) \(\mathstrut -\mathstrut 8q^{71} \) \(\mathstrut +\mathstrut 12q^{74} \) \(\mathstrut -\mathstrut 2q^{75} \) \(\mathstrut -\mathstrut 2q^{77} \) \(\mathstrut -\mathstrut 4q^{78} \) \(\mathstrut -\mathstrut 8q^{79} \) \(\mathstrut +\mathstrut 8q^{80} \) \(\mathstrut +\mathstrut 2q^{81} \) \(\mathstrut -\mathstrut 20q^{82} \) \(\mathstrut +\mathstrut 6q^{83} \) \(\mathstrut -\mathstrut 2q^{85} \) \(\mathstrut +\mathstrut 4q^{86} \) \(\mathstrut -\mathstrut 6q^{87} \) \(\mathstrut +\mathstrut 14q^{89} \) \(\mathstrut -\mathstrut 4q^{91} \) \(\mathstrut -\mathstrut 4q^{93} \) \(\mathstrut +\mathstrut 12q^{94} \) \(\mathstrut +\mathstrut 2q^{95} \) \(\mathstrut -\mathstrut 6q^{97} \) \(\mathstrut +\mathstrut 2q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.41421 −1.00000 0 −1.00000 1.41421 −1.00000 2.82843 1.00000 1.41421
1.2 1.41421 −1.00000 0 −1.00000 −1.41421 −1.00000 −2.82843 1.00000 −1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(1\)
\(11\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1155))\):

\(T_{2}^{2} \) \(\mathstrut -\mathstrut 2 \)
\(T_{13}^{2} \) \(\mathstrut -\mathstrut 4 T_{13} \) \(\mathstrut +\mathstrut 2 \)
\(T_{17}^{2} \) \(\mathstrut -\mathstrut 2 T_{17} \) \(\mathstrut -\mathstrut 7 \)