Properties

Level 102
Weight 2
Character $\chi_{102}(1, \cdot)$
Label 102.2.1.c
Dimension of Galois orbit 1
Twist info Is minimal
CM No
Atkin-Lehner eigenvalues \( \omega_{ 17 } \) : -1
\( \omega_{ 2 } \) : -1
\( \omega_{ 3 } \) : -1

Related objects

Learn more about

Show commands for: SageMath

magma: S := CuspForms(102,2);
magma: N := Newforms(S);
sage: N = Newforms(102,2,names="a")
sage: f = N[2]

q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field
\(q \) \(\mathstrut+\) \(q^{2} \) \(\mathstrut+\) \(q^{3} \) \(\mathstrut+\) \(q^{4} \) \(\mathstrut-\) \(2q^{5} \) \(\mathstrut+\) \(q^{6} \) \(\mathstrut+\) \(q^{8} \) \(\mathstrut+\) \(q^{9} \) \(\mathstrut+O(q^{10}) \)

(To download coefficients, see below.)

Coefficient field

sage: K = f.hecke_eigenvalue_field() # note that sage often uses an isomorphic number field
The coefficient field is \(\Q\)

Detailed data

The first few Satake parameters \(\alpha_p\) and angles \(\theta_p = \textrm{Arg}(\alpha_p) \) are

\( p \) 5 7
\(\alpha_{p}\) \( -0.447213595499958 + 0.894427190999916i \) \( 1.00000000000000i \)
\(\theta_{p}\) \( 2.03444393579570 \) \( 1.57079632679490 \)

Further Properties

Download this Newform

The database contains the coefficients of \(q^n\) for \(0 \le n\le 124 \).
Choose format to download:
Download coefficients of \(q^n\) for \(0\le n\le \) (maximum 124)