Properties

Label 1000.2.a.h
Level $1000$
Weight $2$
Character orbit 1000.a
Self dual yes
Analytic conductor $7.985$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(1,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{3} + ( - \beta_{3} + \beta_{2} + 2) q^{7} + (\beta_{2} + 2 \beta_1 + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 1) q^{3} + ( - \beta_{3} + \beta_{2} + 2) q^{7} + (\beta_{2} + 2 \beta_1 + 2) q^{9} - 2 \beta_{3} q^{11} + ( - 2 \beta_{2} - 2 \beta_1) q^{13} + (2 \beta_{3} + 2 \beta_{2} + 2) q^{17} + (2 \beta_{3} + 2 \beta_1) q^{19} + ( - 2 \beta_{2} + 2 \beta_1 + 1) q^{21} + (\beta_{3} - 3 \beta_{2} + 2) q^{23} + (\beta_{3} + 3 \beta_{2} + \beta_1 + 7) q^{27} + (2 \beta_{3} + 3 \beta_{2} - 2 \beta_1 + 4) q^{29} + (2 \beta_{3} - 4) q^{31} + ( - 2 \beta_{3} - 6 \beta_{2} - 2) q^{33} + ( - 2 \beta_{3} + 4 \beta_{2} + \cdots + 2) q^{37}+ \cdots + ( - 2 \beta_{3} - 12 \beta_{2} + \cdots - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 6 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} + 6 q^{7} + 6 q^{9} + 4 q^{13} + 4 q^{17} + 8 q^{21} + 14 q^{23} + 22 q^{27} + 10 q^{29} - 16 q^{31} + 4 q^{33} - 24 q^{39} + 2 q^{41} + 12 q^{43} + 16 q^{47} + 2 q^{49} + 24 q^{53} + 24 q^{57} + 8 q^{59} + 6 q^{61} + 18 q^{63} - 16 q^{67} + 12 q^{69} - 24 q^{71} + 4 q^{73} + 32 q^{77} - 48 q^{79} + 16 q^{81} + 2 q^{83} - 22 q^{87} + 10 q^{89} - 8 q^{91} - 20 q^{93} + 4 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 7x^{2} + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.14896
−1.54336
1.54336
2.14896
0 −1.14896 0 0 0 3.94617 0 −1.67989 0
1.2 0 −0.543362 0 0 0 −2.11525 0 −2.70476 0
1.3 0 2.54336 0 0 0 2.87918 0 3.46869 0
1.4 0 3.14896 0 0 0 1.28990 0 6.91596 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1000.2.a.h yes 4
3.b odd 2 1 9000.2.a.ba 4
4.b odd 2 1 2000.2.a.m 4
5.b even 2 1 1000.2.a.e 4
5.c odd 4 2 1000.2.c.d 8
8.b even 2 1 8000.2.a.ba 4
8.d odd 2 1 8000.2.a.bq 4
15.d odd 2 1 9000.2.a.r 4
20.d odd 2 1 2000.2.a.r 4
20.e even 4 2 2000.2.c.j 8
40.e odd 2 1 8000.2.a.bb 4
40.f even 2 1 8000.2.a.br 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1000.2.a.e 4 5.b even 2 1
1000.2.a.h yes 4 1.a even 1 1 trivial
1000.2.c.d 8 5.c odd 4 2
2000.2.a.m 4 4.b odd 2 1
2000.2.a.r 4 20.d odd 2 1
2000.2.c.j 8 20.e even 4 2
8000.2.a.ba 4 8.b even 2 1
8000.2.a.bb 4 40.e odd 2 1
8000.2.a.bq 4 8.d odd 2 1
8000.2.a.br 4 40.f even 2 1
9000.2.a.r 4 15.d odd 2 1
9000.2.a.ba 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1000))\):

\( T_{3}^{4} - 4T_{3}^{3} - T_{3}^{2} + 10T_{3} + 5 \) Copy content Toggle raw display
\( T_{7}^{4} - 6T_{7}^{3} + 3T_{7}^{2} + 28T_{7} - 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 6 T^{3} + \cdots - 31 \) Copy content Toggle raw display
$11$ \( T^{4} - 32T^{2} + 176 \) Copy content Toggle raw display
$13$ \( T^{4} - 4 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots - 80 \) Copy content Toggle raw display
$19$ \( T^{4} - 52T^{2} + 176 \) Copy content Toggle raw display
$23$ \( T^{4} - 14 T^{3} + \cdots - 71 \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots - 2039 \) Copy content Toggle raw display
$31$ \( T^{4} + 16 T^{3} + \cdots - 80 \) Copy content Toggle raw display
$37$ \( T^{4} - 92 T^{2} + \cdots - 464 \) Copy content Toggle raw display
$41$ \( T^{4} - 2 T^{3} + \cdots - 751 \) Copy content Toggle raw display
$43$ \( T^{4} - 12 T^{3} + \cdots + 29 \) Copy content Toggle raw display
$47$ \( T^{4} - 16 T^{3} + \cdots - 539 \) Copy content Toggle raw display
$53$ \( (T^{2} - 12 T + 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 8 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$61$ \( T^{4} - 6 T^{3} + \cdots + 2305 \) Copy content Toggle raw display
$67$ \( T^{4} + 16 T^{3} + \cdots - 656 \) Copy content Toggle raw display
$71$ \( T^{4} + 24 T^{3} + \cdots - 4880 \) Copy content Toggle raw display
$73$ \( T^{4} - 4 T^{3} + \cdots + 11824 \) Copy content Toggle raw display
$79$ \( T^{4} + 48 T^{3} + \cdots + 16880 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots - 31 \) Copy content Toggle raw display
$89$ \( T^{4} - 10 T^{3} + \cdots + 241 \) Copy content Toggle raw display
$97$ \( T^{4} - 4 T^{3} + \cdots + 3376 \) Copy content Toggle raw display
show more
show less