Properties

Label 1.94.a.a.1.7
Level $1$
Weight $94$
Character 1.1
Self dual yes
Analytic conductor $54.773$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 94 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(54.7725430605\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Defining polynomial: \(x^{7} - x^{6} - 160477500301516091326739 x^{5} + 877016488484326647371325741724874 x^{4} + 7260529465737129707868752892581169765229378456 x^{3} - 20781038399188480098606854392326662967337072615105929280 x^{2} - 71309214652872234197294752847774640455181142633761719353245451878000 x - 1353216958878139720025204995487184336935523797943751976847532373756765247900000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{88}\cdot 3^{34}\cdot 5^{10}\cdot 7^{6}\cdot 13^{2}\cdot 19\cdot 23\cdot 31^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.74671e11\) of defining polynomial
Character \(\chi\) \(=\) 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.64459e14 q^{2} -2.77426e22 q^{3} +1.71431e28 q^{4} +3.18897e32 q^{5} -4.56250e36 q^{6} -2.05341e39 q^{7} +1.19061e42 q^{8} +5.33996e44 q^{9} +O(q^{10})\) \(q+1.64459e14 q^{2} -2.77426e22 q^{3} +1.71431e28 q^{4} +3.18897e32 q^{5} -4.56250e36 q^{6} -2.05341e39 q^{7} +1.19061e42 q^{8} +5.33996e44 q^{9} +5.24454e46 q^{10} -1.16805e48 q^{11} -4.75594e50 q^{12} +9.03622e51 q^{13} -3.37700e53 q^{14} -8.84704e54 q^{15} +2.60289e55 q^{16} +2.65663e56 q^{17} +8.78202e58 q^{18} -2.80384e59 q^{19} +5.46689e60 q^{20} +5.69668e61 q^{21} -1.92096e62 q^{22} -1.45691e63 q^{23} -3.30306e64 q^{24} +7.21293e62 q^{25} +1.48608e66 q^{26} -8.27675e66 q^{27} -3.52017e67 q^{28} -8.91760e67 q^{29} -1.45497e69 q^{30} +8.50292e68 q^{31} -7.51055e69 q^{32} +3.24048e70 q^{33} +4.36905e70 q^{34} -6.54826e71 q^{35} +9.15434e72 q^{36} +2.81703e72 q^{37} -4.61116e73 q^{38} -2.50688e74 q^{39} +3.79682e74 q^{40} -1.66230e75 q^{41} +9.36868e75 q^{42} -6.95533e75 q^{43} -2.00240e76 q^{44} +1.70290e77 q^{45} -2.39601e77 q^{46} -7.32306e77 q^{47} -7.22109e77 q^{48} +2.88966e77 q^{49} +1.18623e77 q^{50} -7.37017e78 q^{51} +1.54909e80 q^{52} -1.26790e80 q^{53} -1.36118e81 q^{54} -3.72488e80 q^{55} -2.44481e81 q^{56} +7.77858e81 q^{57} -1.46658e82 q^{58} +2.67897e81 q^{59} -1.51666e83 q^{60} -1.91064e82 q^{61} +1.39838e83 q^{62} -1.09651e84 q^{63} -1.49295e84 q^{64} +2.88163e84 q^{65} +5.32924e84 q^{66} +1.94035e84 q^{67} +4.55428e84 q^{68} +4.04184e85 q^{69} -1.07692e86 q^{70} -1.09152e85 q^{71} +6.35781e86 q^{72} +3.20901e86 q^{73} +4.63285e86 q^{74} -2.00105e85 q^{75} -4.80665e87 q^{76} +2.39848e87 q^{77} -4.12278e88 q^{78} +3.00437e88 q^{79} +8.30055e87 q^{80} +1.03780e89 q^{81} -2.73380e89 q^{82} -2.46149e89 q^{83} +9.76587e89 q^{84} +8.47191e88 q^{85} -1.14386e90 q^{86} +2.47397e90 q^{87} -1.39069e90 q^{88} -2.79307e89 q^{89} +2.80056e91 q^{90} -1.85550e91 q^{91} -2.49759e91 q^{92} -2.35893e91 q^{93} -1.20434e92 q^{94} -8.94137e91 q^{95} +2.08362e92 q^{96} +3.53812e92 q^{97} +4.75229e91 q^{98} -6.23735e92 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7q + 43735426713792q^{2} - \)\(36\!\cdots\!84\)\(q^{3} + \)\(37\!\cdots\!44\)\(q^{4} - \)\(24\!\cdots\!50\)\(q^{5} - \)\(34\!\cdots\!56\)\(q^{6} - \)\(92\!\cdots\!08\)\(q^{7} + \)\(62\!\cdots\!60\)\(q^{8} + \)\(36\!\cdots\!11\)\(q^{9} + O(q^{10}) \) \( 7q + 43735426713792q^{2} - \)\(36\!\cdots\!84\)\(q^{3} + \)\(37\!\cdots\!44\)\(q^{4} - \)\(24\!\cdots\!50\)\(q^{5} - \)\(34\!\cdots\!56\)\(q^{6} - \)\(92\!\cdots\!08\)\(q^{7} + \)\(62\!\cdots\!60\)\(q^{8} + \)\(36\!\cdots\!11\)\(q^{9} + \)\(56\!\cdots\!00\)\(q^{10} + \)\(10\!\cdots\!24\)\(q^{11} - \)\(16\!\cdots\!48\)\(q^{12} + \)\(19\!\cdots\!26\)\(q^{13} - \)\(82\!\cdots\!32\)\(q^{14} - \)\(16\!\cdots\!00\)\(q^{15} - \)\(18\!\cdots\!48\)\(q^{16} + \)\(80\!\cdots\!42\)\(q^{17} + \)\(79\!\cdots\!36\)\(q^{18} - \)\(49\!\cdots\!00\)\(q^{19} - \)\(58\!\cdots\!00\)\(q^{20} + \)\(54\!\cdots\!84\)\(q^{21} + \)\(34\!\cdots\!44\)\(q^{22} - \)\(25\!\cdots\!64\)\(q^{23} - \)\(29\!\cdots\!00\)\(q^{24} + \)\(18\!\cdots\!25\)\(q^{25} + \)\(79\!\cdots\!64\)\(q^{26} - \)\(10\!\cdots\!40\)\(q^{27} + \)\(19\!\cdots\!24\)\(q^{28} + \)\(11\!\cdots\!50\)\(q^{29} - \)\(64\!\cdots\!00\)\(q^{30} - \)\(11\!\cdots\!56\)\(q^{31} - \)\(70\!\cdots\!88\)\(q^{32} + \)\(66\!\cdots\!12\)\(q^{33} + \)\(80\!\cdots\!28\)\(q^{34} - \)\(16\!\cdots\!00\)\(q^{35} + \)\(52\!\cdots\!12\)\(q^{36} + \)\(11\!\cdots\!42\)\(q^{37} - \)\(42\!\cdots\!60\)\(q^{38} - \)\(20\!\cdots\!68\)\(q^{39} + \)\(76\!\cdots\!00\)\(q^{40} - \)\(50\!\cdots\!46\)\(q^{41} - \)\(54\!\cdots\!76\)\(q^{42} - \)\(72\!\cdots\!44\)\(q^{43} + \)\(94\!\cdots\!08\)\(q^{44} + \)\(16\!\cdots\!50\)\(q^{45} - \)\(63\!\cdots\!16\)\(q^{46} - \)\(37\!\cdots\!08\)\(q^{47} - \)\(41\!\cdots\!64\)\(q^{48} + \)\(25\!\cdots\!99\)\(q^{49} - \)\(31\!\cdots\!00\)\(q^{50} - \)\(55\!\cdots\!36\)\(q^{51} - \)\(55\!\cdots\!28\)\(q^{52} - \)\(36\!\cdots\!34\)\(q^{53} - \)\(19\!\cdots\!00\)\(q^{54} - \)\(35\!\cdots\!00\)\(q^{55} - \)\(12\!\cdots\!00\)\(q^{56} - \)\(13\!\cdots\!80\)\(q^{57} - \)\(73\!\cdots\!40\)\(q^{58} - \)\(11\!\cdots\!00\)\(q^{59} - \)\(46\!\cdots\!00\)\(q^{60} - \)\(32\!\cdots\!26\)\(q^{61} - \)\(99\!\cdots\!36\)\(q^{62} - \)\(22\!\cdots\!64\)\(q^{63} - \)\(47\!\cdots\!16\)\(q^{64} + \)\(24\!\cdots\!00\)\(q^{65} + \)\(12\!\cdots\!08\)\(q^{66} + \)\(97\!\cdots\!92\)\(q^{67} + \)\(51\!\cdots\!24\)\(q^{68} + \)\(12\!\cdots\!92\)\(q^{69} + \)\(43\!\cdots\!00\)\(q^{70} + \)\(42\!\cdots\!84\)\(q^{71} + \)\(11\!\cdots\!80\)\(q^{72} + \)\(24\!\cdots\!86\)\(q^{73} + \)\(98\!\cdots\!48\)\(q^{74} + \)\(94\!\cdots\!00\)\(q^{75} - \)\(98\!\cdots\!00\)\(q^{76} - \)\(16\!\cdots\!56\)\(q^{77} - \)\(73\!\cdots\!28\)\(q^{78} - \)\(43\!\cdots\!00\)\(q^{79} - \)\(88\!\cdots\!00\)\(q^{80} - \)\(70\!\cdots\!53\)\(q^{81} - \)\(23\!\cdots\!76\)\(q^{82} - \)\(20\!\cdots\!04\)\(q^{83} + \)\(16\!\cdots\!28\)\(q^{84} + \)\(16\!\cdots\!00\)\(q^{85} + \)\(32\!\cdots\!24\)\(q^{86} + \)\(65\!\cdots\!80\)\(q^{87} + \)\(63\!\cdots\!20\)\(q^{88} + \)\(55\!\cdots\!50\)\(q^{89} + \)\(19\!\cdots\!00\)\(q^{90} - \)\(18\!\cdots\!96\)\(q^{91} - \)\(81\!\cdots\!08\)\(q^{92} - \)\(12\!\cdots\!28\)\(q^{93} - \)\(30\!\cdots\!92\)\(q^{94} - \)\(21\!\cdots\!00\)\(q^{95} - \)\(22\!\cdots\!16\)\(q^{96} + \)\(43\!\cdots\!42\)\(q^{97} - \)\(69\!\cdots\!56\)\(q^{98} + \)\(30\!\cdots\!52\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.64459e14 1.65258 0.826288 0.563247i \(-0.190448\pi\)
0.826288 + 0.563247i \(0.190448\pi\)
\(3\) −2.77426e22 −1.80721 −0.903605 0.428367i \(-0.859089\pi\)
−0.903605 + 0.428367i \(0.859089\pi\)
\(4\) 1.71431e28 1.73101
\(5\) 3.18897e32 1.00357 0.501783 0.864994i \(-0.332678\pi\)
0.501783 + 0.864994i \(0.332678\pi\)
\(6\) −4.56250e36 −2.98655
\(7\) −2.05341e39 −1.03613 −0.518067 0.855340i \(-0.673348\pi\)
−0.518067 + 0.855340i \(0.673348\pi\)
\(8\) 1.19061e42 1.20805
\(9\) 5.33996e44 2.26601
\(10\) 5.24454e46 1.65847
\(11\) −1.16805e48 −0.439240 −0.219620 0.975585i \(-0.570482\pi\)
−0.219620 + 0.975585i \(0.570482\pi\)
\(12\) −4.75594e50 −3.12830
\(13\) 9.03622e51 1.43754 0.718772 0.695246i \(-0.244705\pi\)
0.718772 + 0.695246i \(0.244705\pi\)
\(14\) −3.37700e53 −1.71229
\(15\) −8.84704e54 −1.81365
\(16\) 2.60289e55 0.265385
\(17\) 2.65663e56 0.161605 0.0808027 0.996730i \(-0.474252\pi\)
0.0808027 + 0.996730i \(0.474252\pi\)
\(18\) 8.78202e58 3.74475
\(19\) −2.80384e59 −0.967634 −0.483817 0.875169i \(-0.660750\pi\)
−0.483817 + 0.875169i \(0.660750\pi\)
\(20\) 5.46689e60 1.73718
\(21\) 5.69668e61 1.87251
\(22\) −1.92096e62 −0.725878
\(23\) −1.45691e63 −0.696767 −0.348384 0.937352i \(-0.613269\pi\)
−0.348384 + 0.937352i \(0.613269\pi\)
\(24\) −3.30306e64 −2.18320
\(25\) 7.21293e62 0.00714334
\(26\) 1.48608e66 2.37565
\(27\) −8.27675e66 −2.28794
\(28\) −3.52017e67 −1.79356
\(29\) −8.91760e67 −0.888671 −0.444336 0.895860i \(-0.646560\pi\)
−0.444336 + 0.895860i \(0.646560\pi\)
\(30\) −1.45497e69 −2.99720
\(31\) 8.50292e68 0.381285 0.190642 0.981660i \(-0.438943\pi\)
0.190642 + 0.981660i \(0.438943\pi\)
\(32\) −7.51055e69 −0.769480
\(33\) 3.24048e70 0.793799
\(34\) 4.36905e70 0.267065
\(35\) −6.54826e71 −1.03983
\(36\) 9.15434e72 3.92248
\(37\) 2.81703e72 0.337607 0.168804 0.985650i \(-0.446010\pi\)
0.168804 + 0.985650i \(0.446010\pi\)
\(38\) −4.61116e73 −1.59909
\(39\) −2.50688e74 −2.59794
\(40\) 3.79682e74 1.21236
\(41\) −1.66230e75 −1.68369 −0.841843 0.539722i \(-0.818529\pi\)
−0.841843 + 0.539722i \(0.818529\pi\)
\(42\) 9.36868e75 3.09447
\(43\) −6.95533e75 −0.769192 −0.384596 0.923085i \(-0.625659\pi\)
−0.384596 + 0.923085i \(0.625659\pi\)
\(44\) −2.00240e76 −0.760329
\(45\) 1.70290e77 2.27409
\(46\) −2.39601e77 −1.15146
\(47\) −7.32306e77 −1.29462 −0.647310 0.762227i \(-0.724106\pi\)
−0.647310 + 0.762227i \(0.724106\pi\)
\(48\) −7.22109e77 −0.479607
\(49\) 2.88966e77 0.0735748
\(50\) 1.18623e77 0.0118049
\(51\) −7.37017e78 −0.292055
\(52\) 1.54909e80 2.48840
\(53\) −1.26790e80 −0.839956 −0.419978 0.907534i \(-0.637962\pi\)
−0.419978 + 0.907534i \(0.637962\pi\)
\(54\) −1.36118e81 −3.78100
\(55\) −3.72488e80 −0.440806
\(56\) −2.44481e81 −1.25170
\(57\) 7.77858e81 1.74872
\(58\) −1.46658e82 −1.46860
\(59\) 2.67897e81 0.121157 0.0605787 0.998163i \(-0.480705\pi\)
0.0605787 + 0.998163i \(0.480705\pi\)
\(60\) −1.51666e83 −3.13945
\(61\) −1.91064e82 −0.183376 −0.0916878 0.995788i \(-0.529226\pi\)
−0.0916878 + 0.995788i \(0.529226\pi\)
\(62\) 1.39838e83 0.630102
\(63\) −1.09651e84 −2.34789
\(64\) −1.49295e84 −1.53701
\(65\) 2.88163e84 1.44267
\(66\) 5.32924e84 1.31181
\(67\) 1.94035e84 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(68\) 4.55428e84 0.279741
\(69\) 4.04184e85 1.25920
\(70\) −1.07692e86 −1.71840
\(71\) −1.09152e85 −0.0900573 −0.0450286 0.998986i \(-0.514338\pi\)
−0.0450286 + 0.998986i \(0.514338\pi\)
\(72\) 6.35781e86 2.73745
\(73\) 3.20901e86 0.727543 0.363771 0.931488i \(-0.381489\pi\)
0.363771 + 0.931488i \(0.381489\pi\)
\(74\) 4.63285e86 0.557922
\(75\) −2.00105e85 −0.0129095
\(76\) −4.80665e87 −1.67498
\(77\) 2.39848e87 0.455112
\(78\) −4.12278e88 −4.29330
\(79\) 3.00437e88 1.73019 0.865095 0.501607i \(-0.167258\pi\)
0.865095 + 0.501607i \(0.167258\pi\)
\(80\) 8.30055e87 0.266331
\(81\) 1.03780e89 1.86878
\(82\) −2.73380e89 −2.78242
\(83\) −2.46149e89 −1.42583 −0.712914 0.701251i \(-0.752625\pi\)
−0.712914 + 0.701251i \(0.752625\pi\)
\(84\) 9.76587e89 3.24134
\(85\) 8.47191e88 0.162182
\(86\) −1.14386e90 −1.27115
\(87\) 2.47397e90 1.60601
\(88\) −1.39069e90 −0.530624
\(89\) −2.79307e89 −0.0630155 −0.0315077 0.999504i \(-0.510031\pi\)
−0.0315077 + 0.999504i \(0.510031\pi\)
\(90\) 2.80056e91 3.75810
\(91\) −1.85550e91 −1.48949
\(92\) −2.49759e91 −1.20611
\(93\) −2.35893e91 −0.689062
\(94\) −1.20434e92 −2.13946
\(95\) −8.94137e91 −0.971084
\(96\) 2.08362e92 1.39061
\(97\) 3.53812e92 1.45843 0.729217 0.684282i \(-0.239884\pi\)
0.729217 + 0.684282i \(0.239884\pi\)
\(98\) 4.75229e91 0.121588
\(99\) −6.23735e92 −0.995321
\(100\) 1.23652e91 0.0123652
\(101\) 1.67913e93 1.05716 0.528579 0.848884i \(-0.322725\pi\)
0.528579 + 0.848884i \(0.322725\pi\)
\(102\) −1.21209e93 −0.482643
\(103\) −2.72877e93 −0.690298 −0.345149 0.938548i \(-0.612172\pi\)
−0.345149 + 0.938548i \(0.612172\pi\)
\(104\) 1.07586e94 1.73662
\(105\) 1.81666e94 1.87919
\(106\) −2.08517e94 −1.38809
\(107\) 2.57521e94 1.10782 0.553908 0.832578i \(-0.313136\pi\)
0.553908 + 0.832578i \(0.313136\pi\)
\(108\) −1.41889e95 −3.96045
\(109\) 7.43481e94 1.35188 0.675939 0.736958i \(-0.263738\pi\)
0.675939 + 0.736958i \(0.263738\pi\)
\(110\) −6.12589e94 −0.728466
\(111\) −7.81518e94 −0.610127
\(112\) −5.34479e94 −0.274975
\(113\) −9.21006e94 −0.313412 −0.156706 0.987645i \(-0.550087\pi\)
−0.156706 + 0.987645i \(0.550087\pi\)
\(114\) 1.27925e96 2.88989
\(115\) −4.64604e95 −0.699251
\(116\) −1.52875e96 −1.53830
\(117\) 4.82530e96 3.25748
\(118\) 4.40580e95 0.200222
\(119\) −5.45514e95 −0.167445
\(120\) −1.05334e97 −2.19098
\(121\) −5.70729e96 −0.807068
\(122\) −3.14221e96 −0.303042
\(123\) 4.61166e97 3.04278
\(124\) 1.45766e97 0.660008
\(125\) −3.19704e97 −0.996397
\(126\) −1.80331e98 −3.88007
\(127\) 8.56364e97 1.27581 0.637904 0.770116i \(-0.279802\pi\)
0.637904 + 0.770116i \(0.279802\pi\)
\(128\) −1.71148e98 −1.77055
\(129\) 1.92959e98 1.39009
\(130\) 4.73908e98 2.38412
\(131\) −2.59789e98 −0.915177 −0.457588 0.889164i \(-0.651287\pi\)
−0.457588 + 0.889164i \(0.651287\pi\)
\(132\) 5.55518e98 1.37407
\(133\) 5.75743e98 1.00260
\(134\) 3.19106e98 0.392249
\(135\) −2.63943e99 −2.29610
\(136\) 3.16301e98 0.195227
\(137\) −3.51555e99 −1.54343 −0.771714 0.635969i \(-0.780601\pi\)
−0.771714 + 0.635969i \(0.780601\pi\)
\(138\) 6.64715e99 2.08093
\(139\) −6.67319e99 −1.49329 −0.746647 0.665221i \(-0.768337\pi\)
−0.746647 + 0.665221i \(0.768337\pi\)
\(140\) −1.12257e100 −1.79995
\(141\) 2.03161e100 2.33965
\(142\) −1.79510e99 −0.148827
\(143\) −1.05548e100 −0.631427
\(144\) 1.38993e100 0.601365
\(145\) −2.84380e100 −0.891839
\(146\) 5.27750e100 1.20232
\(147\) −8.01666e99 −0.132965
\(148\) 4.82926e100 0.584401
\(149\) 1.48590e100 0.131470 0.0657351 0.997837i \(-0.479061\pi\)
0.0657351 + 0.997837i \(0.479061\pi\)
\(150\) −3.29091e99 −0.0213340
\(151\) 1.51425e101 0.720723 0.360362 0.932813i \(-0.382653\pi\)
0.360362 + 0.932813i \(0.382653\pi\)
\(152\) −3.33828e101 −1.16895
\(153\) 1.41863e101 0.366199
\(154\) 3.94451e101 0.752107
\(155\) 2.71156e101 0.382644
\(156\) −4.29757e102 −4.49706
\(157\) −2.25114e102 −1.75012 −0.875060 0.484014i \(-0.839179\pi\)
−0.875060 + 0.484014i \(0.839179\pi\)
\(158\) 4.94095e102 2.85927
\(159\) 3.51748e102 1.51798
\(160\) −2.39509e102 −0.772224
\(161\) 2.99162e102 0.721945
\(162\) 1.70674e103 3.08830
\(163\) 5.71396e101 0.0776629 0.0388315 0.999246i \(-0.487636\pi\)
0.0388315 + 0.999246i \(0.487636\pi\)
\(164\) −2.84970e103 −2.91448
\(165\) 1.03338e103 0.796629
\(166\) −4.04814e103 −2.35629
\(167\) −5.24708e102 −0.230995 −0.115497 0.993308i \(-0.536846\pi\)
−0.115497 + 0.993308i \(0.536846\pi\)
\(168\) 6.78252e103 2.26209
\(169\) 4.21410e103 1.06653
\(170\) 1.39328e103 0.268017
\(171\) −1.49724e104 −2.19266
\(172\) −1.19236e104 −1.33148
\(173\) −1.36592e104 −1.16488 −0.582441 0.812873i \(-0.697902\pi\)
−0.582441 + 0.812873i \(0.697902\pi\)
\(174\) 4.06866e104 2.65406
\(175\) −1.48111e102 −0.00740147
\(176\) −3.04031e103 −0.116568
\(177\) −7.43217e103 −0.218957
\(178\) −4.59345e103 −0.104138
\(179\) −5.69683e104 −0.995331 −0.497665 0.867369i \(-0.665809\pi\)
−0.497665 + 0.867369i \(0.665809\pi\)
\(180\) 2.91929e105 3.93647
\(181\) 8.04012e104 0.837932 0.418966 0.908002i \(-0.362393\pi\)
0.418966 + 0.908002i \(0.362393\pi\)
\(182\) −3.05153e105 −2.46149
\(183\) 5.30061e104 0.331398
\(184\) −1.73461e105 −0.841729
\(185\) 8.98344e104 0.338811
\(186\) −3.87946e105 −1.13873
\(187\) −3.10308e104 −0.0709836
\(188\) −1.25540e106 −2.24100
\(189\) 1.69955e106 2.37061
\(190\) −1.47049e106 −1.60479
\(191\) 6.07307e105 0.519226 0.259613 0.965713i \(-0.416405\pi\)
0.259613 + 0.965713i \(0.416405\pi\)
\(192\) 4.14183e106 2.77770
\(193\) −1.56914e106 −0.826509 −0.413255 0.910616i \(-0.635608\pi\)
−0.413255 + 0.910616i \(0.635608\pi\)
\(194\) 5.81874e106 2.41017
\(195\) −7.99437e106 −2.60720
\(196\) 4.95377e105 0.127359
\(197\) 5.15564e106 1.04617 0.523086 0.852280i \(-0.324781\pi\)
0.523086 + 0.852280i \(0.324781\pi\)
\(198\) −1.02578e107 −1.64484
\(199\) −6.16450e105 −0.0782042 −0.0391021 0.999235i \(-0.512450\pi\)
−0.0391021 + 0.999235i \(0.512450\pi\)
\(200\) 8.58779e104 0.00862952
\(201\) −5.38302e106 −0.428953
\(202\) 2.76147e107 1.74704
\(203\) 1.83115e107 0.920783
\(204\) −1.26348e107 −0.505550
\(205\) −5.30105e107 −1.68969
\(206\) −4.48770e107 −1.14077
\(207\) −7.77983e107 −1.57888
\(208\) 2.35203e107 0.381503
\(209\) 3.27503e107 0.425024
\(210\) 2.98765e108 3.10550
\(211\) 1.70503e108 1.42101 0.710505 0.703692i \(-0.248467\pi\)
0.710505 + 0.703692i \(0.248467\pi\)
\(212\) −2.17357e108 −1.45397
\(213\) 3.02816e107 0.162752
\(214\) 4.23516e108 1.83075
\(215\) −2.21804e108 −0.771934
\(216\) −9.85437e108 −2.76395
\(217\) −1.74600e108 −0.395062
\(218\) 1.22272e109 2.23408
\(219\) −8.90263e108 −1.31482
\(220\) −6.38560e108 −0.763040
\(221\) 2.40059e108 0.232315
\(222\) −1.28527e109 −1.00828
\(223\) 6.25747e108 0.398311 0.199156 0.979968i \(-0.436180\pi\)
0.199156 + 0.979968i \(0.436180\pi\)
\(224\) 1.54222e109 0.797285
\(225\) 3.85168e107 0.0161869
\(226\) −1.51467e109 −0.517937
\(227\) 4.56314e109 1.27075 0.635377 0.772202i \(-0.280845\pi\)
0.635377 + 0.772202i \(0.280845\pi\)
\(228\) 1.33349e110 3.02705
\(229\) −8.76282e109 −1.62291 −0.811454 0.584416i \(-0.801324\pi\)
−0.811454 + 0.584416i \(0.801324\pi\)
\(230\) −7.64081e109 −1.15557
\(231\) −6.65402e109 −0.822483
\(232\) −1.06174e110 −1.07356
\(233\) −1.12526e110 −0.931541 −0.465770 0.884906i \(-0.654223\pi\)
−0.465770 + 0.884906i \(0.654223\pi\)
\(234\) 7.93563e110 5.38324
\(235\) −2.33530e110 −1.29924
\(236\) 4.59259e109 0.209725
\(237\) −8.33491e110 −3.12682
\(238\) −8.97144e109 −0.276716
\(239\) 4.94210e110 1.25432 0.627161 0.778889i \(-0.284217\pi\)
0.627161 + 0.778889i \(0.284217\pi\)
\(240\) −2.30279e110 −0.481317
\(241\) 5.44752e110 0.938440 0.469220 0.883081i \(-0.344535\pi\)
0.469220 + 0.883081i \(0.344535\pi\)
\(242\) −9.38612e110 −1.33374
\(243\) −9.28656e110 −1.08934
\(244\) −3.27543e110 −0.317425
\(245\) 9.21505e109 0.0738371
\(246\) 7.58427e111 5.02842
\(247\) −2.53361e111 −1.39101
\(248\) 1.01237e111 0.460611
\(249\) 6.82882e111 2.57677
\(250\) −5.25780e111 −1.64662
\(251\) −4.01618e111 −1.04468 −0.522342 0.852736i \(-0.674942\pi\)
−0.522342 + 0.852736i \(0.674942\pi\)
\(252\) −1.87976e112 −4.06422
\(253\) 1.70174e111 0.306048
\(254\) 1.40836e112 2.10837
\(255\) −2.35033e111 −0.293096
\(256\) −1.33612e112 −1.38896
\(257\) −5.20895e111 −0.451710 −0.225855 0.974161i \(-0.572518\pi\)
−0.225855 + 0.974161i \(0.572518\pi\)
\(258\) 3.17337e112 2.29723
\(259\) −5.78451e111 −0.349806
\(260\) 4.94000e112 2.49727
\(261\) −4.76196e112 −2.01373
\(262\) −4.27245e112 −1.51240
\(263\) 1.79958e112 0.533616 0.266808 0.963750i \(-0.414031\pi\)
0.266808 + 0.963750i \(0.414031\pi\)
\(264\) 3.85814e112 0.958949
\(265\) −4.04329e112 −0.842951
\(266\) 9.46858e112 1.65687
\(267\) 7.74871e111 0.113882
\(268\) 3.32635e112 0.410866
\(269\) 1.32093e113 1.37214 0.686072 0.727534i \(-0.259334\pi\)
0.686072 + 0.727534i \(0.259334\pi\)
\(270\) −4.34077e113 −3.79448
\(271\) −2.97524e112 −0.219003 −0.109501 0.993987i \(-0.534925\pi\)
−0.109501 + 0.993987i \(0.534925\pi\)
\(272\) 6.91491e111 0.0428877
\(273\) 5.14765e113 2.69182
\(274\) −5.78162e113 −2.55063
\(275\) −8.42508e110 −0.00313764
\(276\) 6.92896e113 2.17970
\(277\) −4.03987e113 −1.07413 −0.537066 0.843540i \(-0.680467\pi\)
−0.537066 + 0.843540i \(0.680467\pi\)
\(278\) −1.09746e114 −2.46778
\(279\) 4.54053e113 0.863994
\(280\) −7.79642e113 −1.25616
\(281\) 2.87863e113 0.392954 0.196477 0.980508i \(-0.437050\pi\)
0.196477 + 0.980508i \(0.437050\pi\)
\(282\) 3.34115e114 3.86645
\(283\) −5.62457e113 −0.552103 −0.276051 0.961143i \(-0.589026\pi\)
−0.276051 + 0.961143i \(0.589026\pi\)
\(284\) −1.87120e113 −0.155890
\(285\) 2.48057e114 1.75495
\(286\) −1.73582e114 −1.04348
\(287\) 3.41339e114 1.74453
\(288\) −4.01060e114 −1.74365
\(289\) −2.63182e114 −0.973884
\(290\) −4.67687e114 −1.47383
\(291\) −9.81566e114 −2.63570
\(292\) 5.50124e114 1.25938
\(293\) 7.76401e114 1.51615 0.758074 0.652169i \(-0.226141\pi\)
0.758074 + 0.652169i \(0.226141\pi\)
\(294\) −1.31841e114 −0.219735
\(295\) 8.54318e113 0.121589
\(296\) 3.35398e114 0.407846
\(297\) 9.66767e114 1.00496
\(298\) 2.44368e114 0.217265
\(299\) −1.31649e115 −1.00163
\(300\) −3.43043e113 −0.0223465
\(301\) 1.42821e115 0.796986
\(302\) 2.49031e115 1.19105
\(303\) −4.65834e115 −1.91051
\(304\) −7.29809e114 −0.256796
\(305\) −6.09298e114 −0.184029
\(306\) 2.33306e115 0.605172
\(307\) −6.39360e114 −0.142499 −0.0712494 0.997459i \(-0.522699\pi\)
−0.0712494 + 0.997459i \(0.522699\pi\)
\(308\) 4.11174e115 0.787803
\(309\) 7.57032e115 1.24751
\(310\) 4.45939e115 0.632349
\(311\) −7.51185e115 −0.917041 −0.458521 0.888684i \(-0.651621\pi\)
−0.458521 + 0.888684i \(0.651621\pi\)
\(312\) −2.98472e116 −3.13844
\(313\) 1.96544e116 1.78094 0.890469 0.455044i \(-0.150377\pi\)
0.890469 + 0.455044i \(0.150377\pi\)
\(314\) −3.70219e116 −2.89221
\(315\) −3.49674e116 −2.35626
\(316\) 5.15042e116 2.99498
\(317\) 2.24637e116 1.12778 0.563892 0.825849i \(-0.309304\pi\)
0.563892 + 0.825849i \(0.309304\pi\)
\(318\) 5.78479e116 2.50857
\(319\) 1.04162e116 0.390340
\(320\) −4.76098e116 −1.54249
\(321\) −7.14431e116 −2.00205
\(322\) 4.91998e116 1.19307
\(323\) −7.44876e115 −0.156375
\(324\) 1.77910e117 3.23488
\(325\) 6.51777e114 0.0102689
\(326\) 9.39710e115 0.128344
\(327\) −2.06261e117 −2.44313
\(328\) −1.97916e117 −2.03398
\(329\) 1.50372e117 1.34140
\(330\) 1.69948e117 1.31649
\(331\) −1.83238e117 −1.23315 −0.616573 0.787298i \(-0.711479\pi\)
−0.616573 + 0.787298i \(0.711479\pi\)
\(332\) −4.21976e117 −2.46812
\(333\) 1.50428e117 0.765020
\(334\) −8.62927e116 −0.381736
\(335\) 6.18771e116 0.238202
\(336\) 1.48278e117 0.496937
\(337\) 4.69113e117 1.36926 0.684632 0.728889i \(-0.259963\pi\)
0.684632 + 0.728889i \(0.259963\pi\)
\(338\) 6.93045e117 1.76252
\(339\) 2.55511e117 0.566400
\(340\) 1.45235e117 0.280738
\(341\) −9.93185e116 −0.167476
\(342\) −2.46234e118 −3.62355
\(343\) 7.47142e117 0.959901
\(344\) −8.28108e117 −0.929222
\(345\) 1.28893e118 1.26369
\(346\) −2.24637e118 −1.92506
\(347\) 2.19991e118 1.64848 0.824242 0.566238i \(-0.191602\pi\)
0.824242 + 0.566238i \(0.191602\pi\)
\(348\) 4.24115e118 2.78003
\(349\) −5.28040e116 −0.0302890 −0.0151445 0.999885i \(-0.504821\pi\)
−0.0151445 + 0.999885i \(0.504821\pi\)
\(350\) −2.43581e116 −0.0122315
\(351\) −7.47905e118 −3.28901
\(352\) 8.77270e117 0.337987
\(353\) −8.12471e117 −0.274337 −0.137168 0.990548i \(-0.543800\pi\)
−0.137168 + 0.990548i \(0.543800\pi\)
\(354\) −1.22228e118 −0.361843
\(355\) −3.48083e117 −0.0903784
\(356\) −4.78819e117 −0.109080
\(357\) 1.51340e118 0.302608
\(358\) −9.36892e118 −1.64486
\(359\) 2.33635e118 0.360284 0.180142 0.983641i \(-0.442344\pi\)
0.180142 + 0.983641i \(0.442344\pi\)
\(360\) 2.02749e119 2.74721
\(361\) −5.34716e117 −0.0636852
\(362\) 1.32227e119 1.38475
\(363\) 1.58335e119 1.45854
\(364\) −3.18091e119 −2.57832
\(365\) 1.02335e119 0.730137
\(366\) 8.71731e118 0.547661
\(367\) 3.31122e118 0.183238 0.0916190 0.995794i \(-0.470796\pi\)
0.0916190 + 0.995794i \(0.470796\pi\)
\(368\) −3.79217e118 −0.184912
\(369\) −8.87664e119 −3.81525
\(370\) 1.47740e119 0.559911
\(371\) 2.60351e119 0.870307
\(372\) −4.04394e119 −1.19277
\(373\) 7.34542e118 0.191230 0.0956149 0.995418i \(-0.469518\pi\)
0.0956149 + 0.995418i \(0.469518\pi\)
\(374\) −5.10328e118 −0.117306
\(375\) 8.86941e119 1.80070
\(376\) −8.71890e119 −1.56397
\(377\) −8.05814e119 −1.27750
\(378\) 2.79506e120 3.91762
\(379\) 9.84272e119 1.22009 0.610045 0.792367i \(-0.291151\pi\)
0.610045 + 0.792367i \(0.291151\pi\)
\(380\) −1.53283e120 −1.68096
\(381\) −2.37578e120 −2.30565
\(382\) 9.98768e119 0.858061
\(383\) −5.93733e119 −0.451698 −0.225849 0.974162i \(-0.572516\pi\)
−0.225849 + 0.974162i \(0.572516\pi\)
\(384\) 4.74808e120 3.19975
\(385\) 7.64870e119 0.456735
\(386\) −2.58059e120 −1.36587
\(387\) −3.71412e120 −1.74299
\(388\) 6.06543e120 2.52456
\(389\) 1.81278e119 0.0669404 0.0334702 0.999440i \(-0.489344\pi\)
0.0334702 + 0.999440i \(0.489344\pi\)
\(390\) −1.31474e121 −4.30861
\(391\) −3.87046e119 −0.112601
\(392\) 3.44046e119 0.0888820
\(393\) 7.20721e120 1.65392
\(394\) 8.47889e120 1.72888
\(395\) 9.58086e120 1.73636
\(396\) −1.06927e121 −1.72291
\(397\) −9.51402e120 −1.36334 −0.681672 0.731658i \(-0.738747\pi\)
−0.681672 + 0.731658i \(0.738747\pi\)
\(398\) −1.01380e120 −0.129238
\(399\) −1.59726e121 −1.81191
\(400\) 1.87745e118 0.00189574
\(401\) 4.50368e120 0.404906 0.202453 0.979292i \(-0.435109\pi\)
0.202453 + 0.979292i \(0.435109\pi\)
\(402\) −8.85283e120 −0.708877
\(403\) 7.68343e120 0.548113
\(404\) 2.87855e121 1.82995
\(405\) 3.30950e121 1.87544
\(406\) 3.01148e121 1.52166
\(407\) −3.29044e120 −0.148291
\(408\) −8.77499e120 −0.352817
\(409\) −2.08198e121 −0.747040 −0.373520 0.927622i \(-0.621849\pi\)
−0.373520 + 0.927622i \(0.621849\pi\)
\(410\) −8.71802e121 −2.79234
\(411\) 9.75304e121 2.78930
\(412\) −4.67796e121 −1.19491
\(413\) −5.50102e120 −0.125535
\(414\) −1.27946e122 −2.60922
\(415\) −7.84964e121 −1.43091
\(416\) −6.78670e121 −1.10616
\(417\) 1.85132e122 2.69870
\(418\) 5.38607e121 0.702384
\(419\) −6.99167e121 −0.815885 −0.407943 0.913008i \(-0.633754\pi\)
−0.407943 + 0.913008i \(0.633754\pi\)
\(420\) 3.11431e122 3.25289
\(421\) −5.99741e121 −0.560849 −0.280425 0.959876i \(-0.590475\pi\)
−0.280425 + 0.959876i \(0.590475\pi\)
\(422\) 2.80406e122 2.34833
\(423\) −3.91048e122 −2.93362
\(424\) −1.50957e122 −1.01471
\(425\) 1.91621e119 0.00115440
\(426\) 4.98007e121 0.268961
\(427\) 3.92332e121 0.190002
\(428\) 4.41471e122 1.91764
\(429\) 2.92817e122 1.14112
\(430\) −3.64775e122 −1.27568
\(431\) −2.88391e122 −0.905293 −0.452646 0.891690i \(-0.649520\pi\)
−0.452646 + 0.891690i \(0.649520\pi\)
\(432\) −2.15435e122 −0.607185
\(433\) −6.05429e122 −1.53241 −0.766207 0.642594i \(-0.777858\pi\)
−0.766207 + 0.642594i \(0.777858\pi\)
\(434\) −2.87144e122 −0.652871
\(435\) 7.88943e122 1.61174
\(436\) 1.27456e123 2.34011
\(437\) 4.08494e122 0.674215
\(438\) −1.46411e123 −2.17284
\(439\) −1.03981e123 −1.38788 −0.693940 0.720033i \(-0.744127\pi\)
−0.693940 + 0.720033i \(0.744127\pi\)
\(440\) −4.43488e122 −0.532516
\(441\) 1.54307e122 0.166721
\(442\) 3.94797e122 0.383918
\(443\) 1.27414e123 1.11544 0.557719 0.830030i \(-0.311677\pi\)
0.557719 + 0.830030i \(0.311677\pi\)
\(444\) −1.33976e123 −1.05614
\(445\) −8.90704e121 −0.0632402
\(446\) 1.02909e123 0.658240
\(447\) −4.12226e122 −0.237594
\(448\) 3.06564e123 1.59255
\(449\) −1.96102e122 −0.0918389 −0.0459195 0.998945i \(-0.514622\pi\)
−0.0459195 + 0.998945i \(0.514622\pi\)
\(450\) 6.33441e121 0.0267500
\(451\) 1.94166e123 0.739543
\(452\) −1.57889e123 −0.542518
\(453\) −4.20091e123 −1.30250
\(454\) 7.50448e123 2.10002
\(455\) −5.91715e123 −1.49480
\(456\) 9.26125e123 2.11254
\(457\) 1.00769e123 0.207598 0.103799 0.994598i \(-0.466900\pi\)
0.103799 + 0.994598i \(0.466900\pi\)
\(458\) −1.44112e124 −2.68198
\(459\) −2.19882e123 −0.369744
\(460\) −7.96475e123 −1.21041
\(461\) −1.03588e123 −0.142304 −0.0711522 0.997465i \(-0.522668\pi\)
−0.0711522 + 0.997465i \(0.522668\pi\)
\(462\) −1.09431e124 −1.35922
\(463\) 1.69373e124 1.90252 0.951260 0.308391i \(-0.0997906\pi\)
0.951260 + 0.308391i \(0.0997906\pi\)
\(464\) −2.32115e123 −0.235840
\(465\) −7.52257e123 −0.691518
\(466\) −1.85058e124 −1.53944
\(467\) 1.30804e124 0.984886 0.492443 0.870345i \(-0.336104\pi\)
0.492443 + 0.870345i \(0.336104\pi\)
\(468\) 8.27206e124 5.63873
\(469\) −3.98432e123 −0.245933
\(470\) −3.84061e124 −2.14709
\(471\) 6.24524e124 3.16284
\(472\) 3.18961e123 0.146364
\(473\) 8.12419e123 0.337860
\(474\) −1.37075e125 −5.16731
\(475\) −2.02239e122 −0.00691214
\(476\) −9.35179e123 −0.289849
\(477\) −6.77053e124 −1.90335
\(478\) 8.12771e124 2.07286
\(479\) 3.97794e122 0.00920571 0.00460285 0.999989i \(-0.498535\pi\)
0.00460285 + 0.999989i \(0.498535\pi\)
\(480\) 6.64461e124 1.39557
\(481\) 2.54553e124 0.485325
\(482\) 8.95891e124 1.55084
\(483\) −8.29954e124 −1.30471
\(484\) −9.78406e124 −1.39704
\(485\) 1.12830e125 1.46363
\(486\) −1.52725e125 −1.80022
\(487\) −7.90319e124 −0.846653 −0.423327 0.905977i \(-0.639138\pi\)
−0.423327 + 0.905977i \(0.639138\pi\)
\(488\) −2.27483e124 −0.221527
\(489\) −1.58520e124 −0.140353
\(490\) 1.51549e124 0.122021
\(491\) −1.51789e125 −1.11160 −0.555802 0.831315i \(-0.687589\pi\)
−0.555802 + 0.831315i \(0.687589\pi\)
\(492\) 7.90582e125 5.26707
\(493\) −2.36907e124 −0.143614
\(494\) −4.16674e125 −2.29876
\(495\) −1.98907e125 −0.998870
\(496\) 2.21322e124 0.101187
\(497\) 2.24134e124 0.0933115
\(498\) 1.12306e126 4.25831
\(499\) −2.29978e124 −0.0794348 −0.0397174 0.999211i \(-0.512646\pi\)
−0.0397174 + 0.999211i \(0.512646\pi\)
\(500\) −5.48071e125 −1.72477
\(501\) 1.45568e125 0.417456
\(502\) −6.60495e125 −1.72642
\(503\) 4.01248e125 0.956097 0.478048 0.878334i \(-0.341344\pi\)
0.478048 + 0.878334i \(0.341344\pi\)
\(504\) −1.30552e126 −2.83637
\(505\) 5.35470e125 1.06093
\(506\) 2.79866e125 0.505768
\(507\) −1.16910e126 −1.92744
\(508\) 1.46807e126 2.20844
\(509\) −8.19933e125 −1.12565 −0.562823 0.826578i \(-0.690285\pi\)
−0.562823 + 0.826578i \(0.690285\pi\)
\(510\) −3.86531e125 −0.484364
\(511\) −6.58941e125 −0.753832
\(512\) −5.02404e125 −0.524807
\(513\) 2.32067e126 2.21389
\(514\) −8.56656e125 −0.746486
\(515\) −8.70198e125 −0.692759
\(516\) 3.30791e126 2.40626
\(517\) 8.55371e125 0.568649
\(518\) −9.51313e125 −0.578082
\(519\) 3.78942e126 2.10518
\(520\) 3.43089e126 1.74282
\(521\) −1.97404e126 −0.917069 −0.458534 0.888677i \(-0.651625\pi\)
−0.458534 + 0.888677i \(0.651625\pi\)
\(522\) −7.83145e126 −3.32785
\(523\) 1.23071e126 0.478441 0.239220 0.970965i \(-0.423108\pi\)
0.239220 + 0.970965i \(0.423108\pi\)
\(524\) −4.45358e126 −1.58418
\(525\) 4.10898e124 0.0133760
\(526\) 2.95956e126 0.881841
\(527\) 2.25891e125 0.0616177
\(528\) 8.43460e125 0.210662
\(529\) −2.24951e126 −0.514515
\(530\) −6.64954e126 −1.39304
\(531\) 1.43056e126 0.274544
\(532\) 9.87001e126 1.73551
\(533\) −1.50210e127 −2.42037
\(534\) 1.27434e126 0.188199
\(535\) 8.21228e126 1.11177
\(536\) 2.31019e126 0.286738
\(537\) 1.58045e127 1.79877
\(538\) 2.17239e127 2.26757
\(539\) −3.37527e125 −0.0323170
\(540\) −4.52480e127 −3.97457
\(541\) −9.82340e126 −0.791752 −0.395876 0.918304i \(-0.629559\pi\)
−0.395876 + 0.918304i \(0.629559\pi\)
\(542\) −4.89303e126 −0.361919
\(543\) −2.23054e127 −1.51432
\(544\) −1.99527e126 −0.124352
\(545\) 2.37094e127 1.35670
\(546\) 8.46574e127 4.44843
\(547\) 3.53717e127 1.70704 0.853522 0.521056i \(-0.174462\pi\)
0.853522 + 0.521056i \(0.174462\pi\)
\(548\) −6.02674e127 −2.67169
\(549\) −1.02027e127 −0.415530
\(550\) −1.38558e125 −0.00518520
\(551\) 2.50035e127 0.859908
\(552\) 4.81225e127 1.52118
\(553\) −6.16920e127 −1.79271
\(554\) −6.64391e127 −1.77509
\(555\) −2.49224e127 −0.612302
\(556\) −1.14399e128 −2.58491
\(557\) 1.20728e127 0.250924 0.125462 0.992098i \(-0.459959\pi\)
0.125462 + 0.992098i \(0.459959\pi\)
\(558\) 7.46729e127 1.42782
\(559\) −6.28499e127 −1.10575
\(560\) −1.70444e127 −0.275955
\(561\) 8.60874e126 0.128282
\(562\) 4.73415e127 0.649386
\(563\) 1.26048e128 1.59182 0.795911 0.605414i \(-0.206992\pi\)
0.795911 + 0.605414i \(0.206992\pi\)
\(564\) 3.48280e128 4.04996
\(565\) −2.93706e127 −0.314529
\(566\) −9.25008e127 −0.912392
\(567\) −2.13102e128 −1.93631
\(568\) −1.29957e127 −0.108794
\(569\) −1.77963e128 −1.37280 −0.686402 0.727222i \(-0.740811\pi\)
−0.686402 + 0.727222i \(0.740811\pi\)
\(570\) 4.07951e128 2.90019
\(571\) −1.45624e127 −0.0954230 −0.0477115 0.998861i \(-0.515193\pi\)
−0.0477115 + 0.998861i \(0.515193\pi\)
\(572\) −1.80941e128 −1.09301
\(573\) −1.68483e128 −0.938351
\(574\) 5.61361e128 2.88296
\(575\) −1.05086e126 −0.00497725
\(576\) −7.97230e128 −3.48288
\(577\) 3.39638e128 1.36880 0.684401 0.729106i \(-0.260064\pi\)
0.684401 + 0.729106i \(0.260064\pi\)
\(578\) −4.32826e128 −1.60942
\(579\) 4.35321e128 1.49368
\(580\) −4.87515e128 −1.54378
\(581\) 5.05445e128 1.47735
\(582\) −1.61427e129 −4.35569
\(583\) 1.48097e128 0.368942
\(584\) 3.82068e128 0.878908
\(585\) 1.53878e129 3.26910
\(586\) 1.27686e129 2.50555
\(587\) −9.03917e128 −1.63854 −0.819270 0.573408i \(-0.805621\pi\)
−0.819270 + 0.573408i \(0.805621\pi\)
\(588\) −1.37430e128 −0.230164
\(589\) −2.38408e128 −0.368944
\(590\) 1.40500e128 0.200936
\(591\) −1.43031e129 −1.89065
\(592\) 7.33243e127 0.0895959
\(593\) 3.48429e128 0.393615 0.196807 0.980442i \(-0.436943\pi\)
0.196807 + 0.980442i \(0.436943\pi\)
\(594\) 1.58993e129 1.66077
\(595\) −1.73963e128 −0.168042
\(596\) 2.54729e128 0.227576
\(597\) 1.71019e128 0.141331
\(598\) −2.16509e129 −1.65528
\(599\) 2.02715e128 0.143397 0.0716984 0.997426i \(-0.477158\pi\)
0.0716984 + 0.997426i \(0.477158\pi\)
\(600\) −2.38247e127 −0.0155953
\(601\) −5.80105e128 −0.351434 −0.175717 0.984441i \(-0.556224\pi\)
−0.175717 + 0.984441i \(0.556224\pi\)
\(602\) 2.34882e129 1.31708
\(603\) 1.03614e129 0.537851
\(604\) 2.59589e129 1.24758
\(605\) −1.82004e129 −0.809946
\(606\) −7.66104e129 −3.15726
\(607\) 4.21620e129 1.60934 0.804668 0.593725i \(-0.202343\pi\)
0.804668 + 0.593725i \(0.202343\pi\)
\(608\) 2.10584e129 0.744575
\(609\) −5.08007e129 −1.66405
\(610\) −1.00204e129 −0.304123
\(611\) −6.61728e129 −1.86107
\(612\) 2.43197e129 0.633894
\(613\) −5.05723e129 −1.22180 −0.610901 0.791707i \(-0.709193\pi\)
−0.610901 + 0.791707i \(0.709193\pi\)
\(614\) −1.05148e129 −0.235490
\(615\) 1.47065e130 3.05362
\(616\) 2.85566e129 0.549798
\(617\) 2.60006e129 0.464220 0.232110 0.972690i \(-0.425437\pi\)
0.232110 + 0.972690i \(0.425437\pi\)
\(618\) 1.24500e130 2.06161
\(619\) −7.58633e129 −1.16524 −0.582622 0.812744i \(-0.697973\pi\)
−0.582622 + 0.812744i \(0.697973\pi\)
\(620\) 4.64845e129 0.662361
\(621\) 1.20585e130 1.59416
\(622\) −1.23539e130 −1.51548
\(623\) 5.73532e128 0.0652925
\(624\) −6.52513e129 −0.689455
\(625\) −1.02681e130 −1.00709
\(626\) 3.23234e130 2.94314
\(627\) −9.08578e129 −0.768107
\(628\) −3.85914e130 −3.02948
\(629\) 7.48381e128 0.0545591
\(630\) −5.75069e130 −3.89390
\(631\) 1.12795e130 0.709456 0.354728 0.934970i \(-0.384574\pi\)
0.354728 + 0.934970i \(0.384574\pi\)
\(632\) 3.57703e130 2.09016
\(633\) −4.73018e130 −2.56806
\(634\) 3.69435e130 1.86375
\(635\) 2.73092e130 1.28036
\(636\) 6.03004e130 2.62763
\(637\) 2.61116e129 0.105767
\(638\) 1.71304e130 0.645067
\(639\) −5.82868e129 −0.204070
\(640\) −5.45786e130 −1.77686
\(641\) 6.71910e129 0.203429 0.101715 0.994814i \(-0.467567\pi\)
0.101715 + 0.994814i \(0.467567\pi\)
\(642\) −1.17494e131 −3.30855
\(643\) 2.52742e130 0.662015 0.331007 0.943628i \(-0.392612\pi\)
0.331007 + 0.943628i \(0.392612\pi\)
\(644\) 5.12857e130 1.24969
\(645\) 6.15341e130 1.39505
\(646\) −1.22501e130 −0.258421
\(647\) −5.15142e130 −1.01130 −0.505648 0.862740i \(-0.668746\pi\)
−0.505648 + 0.862740i \(0.668746\pi\)
\(648\) 1.23561e131 2.25758
\(649\) −3.12918e129 −0.0532172
\(650\) 1.07190e129 0.0169701
\(651\) 4.84385e130 0.713961
\(652\) 9.79550e129 0.134435
\(653\) 1.88412e130 0.240794 0.120397 0.992726i \(-0.461583\pi\)
0.120397 + 0.992726i \(0.461583\pi\)
\(654\) −3.39213e131 −4.03745
\(655\) −8.28459e130 −0.918439
\(656\) −4.32680e130 −0.446826
\(657\) 1.71360e131 1.64862
\(658\) 2.47300e131 2.21677
\(659\) −1.86982e131 −1.56181 −0.780903 0.624653i \(-0.785241\pi\)
−0.780903 + 0.624653i \(0.785241\pi\)
\(660\) 1.77153e131 1.37897
\(661\) 8.10316e130 0.587877 0.293938 0.955824i \(-0.405034\pi\)
0.293938 + 0.955824i \(0.405034\pi\)
\(662\) −3.01351e131 −2.03787
\(663\) −6.65985e130 −0.419841
\(664\) −2.93068e131 −1.72247
\(665\) 1.83603e131 1.00617
\(666\) 2.47392e131 1.26425
\(667\) 1.29921e131 0.619197
\(668\) −8.99512e130 −0.399854
\(669\) −1.73598e131 −0.719832
\(670\) 1.01762e131 0.393648
\(671\) 2.23173e130 0.0805459
\(672\) −4.27852e131 −1.44086
\(673\) 1.80585e131 0.567519 0.283760 0.958895i \(-0.408418\pi\)
0.283760 + 0.958895i \(0.408418\pi\)
\(674\) 7.71497e131 2.26281
\(675\) −5.96997e129 −0.0163435
\(676\) 7.22427e131 1.84617
\(677\) 3.06664e131 0.731627 0.365813 0.930688i \(-0.380791\pi\)
0.365813 + 0.930688i \(0.380791\pi\)
\(678\) 4.20210e131 0.936020
\(679\) −7.26520e131 −1.51113
\(680\) 1.00867e131 0.195923
\(681\) −1.26593e132 −2.29652
\(682\) −1.63338e131 −0.276766
\(683\) −2.46209e131 −0.389710 −0.194855 0.980832i \(-0.562424\pi\)
−0.194855 + 0.980832i \(0.562424\pi\)
\(684\) −2.56673e132 −3.79552
\(685\) −1.12110e132 −1.54893
\(686\) 1.22874e132 1.58631
\(687\) 2.43103e132 2.93294
\(688\) −1.81040e131 −0.204132
\(689\) −1.14570e132 −1.20747
\(690\) 2.11976e132 2.08835
\(691\) −5.87683e131 −0.541270 −0.270635 0.962682i \(-0.587234\pi\)
−0.270635 + 0.962682i \(0.587234\pi\)
\(692\) −2.34161e132 −2.01642
\(693\) 1.28078e132 1.03129
\(694\) 3.61794e132 2.72425
\(695\) −2.12806e132 −1.49862
\(696\) 2.94553e132 1.94015
\(697\) −4.41612e131 −0.272093
\(698\) −8.68407e130 −0.0500549
\(699\) 3.12176e132 1.68349
\(700\) −2.53908e130 −0.0128120
\(701\) 1.49796e132 0.707313 0.353657 0.935375i \(-0.384938\pi\)
0.353657 + 0.935375i \(0.384938\pi\)
\(702\) −1.22999e133 −5.43535
\(703\) −7.89851e131 −0.326680
\(704\) 1.74384e132 0.675117
\(705\) 6.47874e132 2.34799
\(706\) −1.33618e132 −0.453362
\(707\) −3.44794e132 −1.09536
\(708\) −1.27410e132 −0.379016
\(709\) −3.30985e132 −0.922059 −0.461029 0.887385i \(-0.652520\pi\)
−0.461029 + 0.887385i \(0.652520\pi\)
\(710\) −5.72452e131 −0.149357
\(711\) 1.60432e133 3.92062
\(712\) −3.32546e131 −0.0761258
\(713\) −1.23880e132 −0.265667
\(714\) 2.48891e132 0.500083
\(715\) −3.36589e132 −0.633678
\(716\) −9.76613e132 −1.72293
\(717\) −1.37107e133 −2.26682
\(718\) 3.84232e132 0.595397
\(719\) −5.03271e131 −0.0730985 −0.0365492 0.999332i \(-0.511637\pi\)
−0.0365492 + 0.999332i \(0.511637\pi\)
\(720\) 4.43246e132 0.603509
\(721\) 5.60328e132 0.715241
\(722\) −8.79387e131 −0.105245
\(723\) −1.51128e133 −1.69596
\(724\) 1.37833e133 1.45047
\(725\) −6.43221e130 −0.00634808
\(726\) 2.60395e133 2.41035
\(727\) 8.36481e132 0.726283 0.363141 0.931734i \(-0.381704\pi\)
0.363141 + 0.931734i \(0.381704\pi\)
\(728\) −2.20918e133 −1.79938
\(729\) 1.30715e132 0.0998836
\(730\) 1.68298e133 1.20661
\(731\) −1.84777e132 −0.124306
\(732\) 9.08688e132 0.573654
\(733\) −8.18691e131 −0.0485049 −0.0242524 0.999706i \(-0.507721\pi\)
−0.0242524 + 0.999706i \(0.507721\pi\)
\(734\) 5.44558e132 0.302815
\(735\) −2.55649e132 −0.133439
\(736\) 1.09422e133 0.536149
\(737\) −2.26642e132 −0.104256
\(738\) −1.45984e134 −6.30499
\(739\) −2.27978e132 −0.0924543 −0.0462271 0.998931i \(-0.514720\pi\)
−0.0462271 + 0.998931i \(0.514720\pi\)
\(740\) 1.54004e133 0.586485
\(741\) 7.02889e133 2.51386
\(742\) 4.28170e133 1.43825
\(743\) 2.14775e132 0.0677648 0.0338824 0.999426i \(-0.489213\pi\)
0.0338824 + 0.999426i \(0.489213\pi\)
\(744\) −2.80856e133 −0.832421
\(745\) 4.73849e132 0.131939
\(746\) 1.20802e133 0.316022
\(747\) −1.31443e134 −3.23094
\(748\) −5.31963e132 −0.122873
\(749\) −5.28796e133 −1.14785
\(750\) 1.45865e134 2.97579
\(751\) 3.97986e133 0.763151 0.381575 0.924338i \(-0.375382\pi\)
0.381575 + 0.924338i \(0.375382\pi\)
\(752\) −1.90611e133 −0.343573
\(753\) 1.11419e134 1.88796
\(754\) −1.32523e134 −2.11117
\(755\) 4.82889e133 0.723293
\(756\) 2.91356e134 4.10356
\(757\) −4.10840e133 −0.544145 −0.272072 0.962277i \(-0.587709\pi\)
−0.272072 + 0.962277i \(0.587709\pi\)
\(758\) 1.61872e134 2.01629
\(759\) −4.72107e133 −0.553093
\(760\) −1.06457e134 −1.17312
\(761\) −1.71355e134 −1.77627 −0.888136 0.459580i \(-0.848000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(762\) −3.90717e134 −3.81027
\(763\) −1.52667e134 −1.40073
\(764\) 1.04111e134 0.898786
\(765\) 4.52397e133 0.367505
\(766\) −9.76445e133 −0.746466
\(767\) 2.42078e133 0.174169
\(768\) 3.70675e134 2.51013
\(769\) 3.69304e133 0.235401 0.117701 0.993049i \(-0.462448\pi\)
0.117701 + 0.993049i \(0.462448\pi\)
\(770\) 1.25789e134 0.754789
\(771\) 1.44510e134 0.816335
\(772\) −2.69000e134 −1.43070
\(773\) 1.91572e134 0.959369 0.479684 0.877441i \(-0.340751\pi\)
0.479684 + 0.877441i \(0.340751\pi\)
\(774\) −6.10819e134 −2.88043
\(775\) 6.13310e131 0.00272365
\(776\) 4.21252e134 1.76186
\(777\) 1.60477e134 0.632174
\(778\) 2.98127e133 0.110624
\(779\) 4.66084e134 1.62919
\(780\) −1.37048e135 −4.51310
\(781\) 1.27495e133 0.0395568
\(782\) −6.36530e133 −0.186082
\(783\) 7.38087e134 2.03323
\(784\) 7.52147e132 0.0195257
\(785\) −7.17881e134 −1.75636
\(786\) 1.18529e135 2.73322
\(787\) −5.96118e134 −1.29571 −0.647854 0.761765i \(-0.724333\pi\)
−0.647854 + 0.761765i \(0.724333\pi\)
\(788\) 8.83836e134 1.81093
\(789\) −4.99250e134 −0.964355
\(790\) 1.57565e135 2.86947
\(791\) 1.89120e134 0.324737
\(792\) −7.42624e134 −1.20240
\(793\) −1.72650e134 −0.263610
\(794\) −1.56466e135 −2.25303
\(795\) 1.12171e135 1.52339
\(796\) −1.05679e134 −0.135372
\(797\) 7.29944e133 0.0882018 0.0441009 0.999027i \(-0.485958\pi\)
0.0441009 + 0.999027i \(0.485958\pi\)
\(798\) −2.62683e135 −2.99431
\(799\) −1.94546e134 −0.209218
\(800\) −5.41731e132 −0.00549666
\(801\) −1.49149e134 −0.142794
\(802\) 7.40668e134 0.669138
\(803\) −3.74829e134 −0.319566
\(804\) −9.22816e134 −0.742521
\(805\) 9.54021e134 0.724519
\(806\) 1.26361e135 0.905799
\(807\) −3.66461e135 −2.47975
\(808\) 1.99919e135 1.27710
\(809\) 5.84885e134 0.352748 0.176374 0.984323i \(-0.443563\pi\)
0.176374 + 0.984323i \(0.443563\pi\)
\(810\) 5.44276e135 3.09932
\(811\) −1.10103e135 −0.592010 −0.296005 0.955186i \(-0.595655\pi\)
−0.296005 + 0.955186i \(0.595655\pi\)
\(812\) 3.13915e135 1.59388
\(813\) 8.25408e134 0.395784
\(814\) −5.41141e134 −0.245062
\(815\) 1.82217e134 0.0779398
\(816\) −1.91837e134 −0.0775070
\(817\) 1.95016e135 0.744296
\(818\) −3.42400e135 −1.23454
\(819\) −9.90831e135 −3.37519
\(820\) −9.08763e135 −2.92487
\(821\) 2.55189e135 0.776079 0.388039 0.921643i \(-0.373152\pi\)
0.388039 + 0.921643i \(0.373152\pi\)
\(822\) 1.60397e136 4.60953
\(823\) 3.68807e135 1.00163 0.500815 0.865554i \(-0.333034\pi\)
0.500815 + 0.865554i \(0.333034\pi\)
\(824\) −3.24890e135 −0.833914
\(825\) 2.33733e133 0.00567038
\(826\) −9.04690e134 −0.207457
\(827\) −3.38429e135 −0.733604 −0.366802 0.930299i \(-0.619547\pi\)
−0.366802 + 0.930299i \(0.619547\pi\)
\(828\) −1.33370e136 −2.73306
\(829\) 7.09533e135 1.37463 0.687317 0.726357i \(-0.258788\pi\)
0.687317 + 0.726357i \(0.258788\pi\)
\(830\) −1.29094e136 −2.36469
\(831\) 1.12076e136 1.94118
\(832\) −1.34906e136 −2.20952
\(833\) 7.67675e133 0.0118901
\(834\) 3.04465e136 4.45980
\(835\) −1.67328e135 −0.231818
\(836\) 5.61441e135 0.735720
\(837\) −7.03766e135 −0.872357
\(838\) −1.14984e136 −1.34831
\(839\) 1.42976e135 0.158611 0.0793053 0.996850i \(-0.474730\pi\)
0.0793053 + 0.996850i \(0.474730\pi\)
\(840\) 2.16293e136 2.27015
\(841\) −2.11728e135 −0.210264
\(842\) −9.86325e135 −0.926847
\(843\) −7.98606e135 −0.710150
\(844\) 2.92294e136 2.45978
\(845\) 1.34387e136 1.07033
\(846\) −6.43113e136 −4.84803
\(847\) 1.17194e136 0.836231
\(848\) −3.30020e135 −0.222912
\(849\) 1.56040e136 0.997766
\(850\) 3.15137e133 0.00190774
\(851\) −4.10416e135 −0.235234
\(852\) 5.19120e135 0.281726
\(853\) 8.68850e135 0.446493 0.223247 0.974762i \(-0.428334\pi\)
0.223247 + 0.974762i \(0.428334\pi\)
\(854\) 6.45224e135 0.313993
\(855\) −4.77466e136 −2.20048
\(856\) 3.06607e136 1.33830
\(857\) 3.33416e136 1.37841 0.689205 0.724567i \(-0.257960\pi\)
0.689205 + 0.724567i \(0.257960\pi\)
\(858\) 4.81562e136 1.88579
\(859\) 8.15089e135 0.302359 0.151179 0.988506i \(-0.451693\pi\)
0.151179 + 0.988506i \(0.451693\pi\)
\(860\) −3.80240e136 −1.33623
\(861\) −9.46962e136 −3.15272
\(862\) −4.74284e136 −1.49607
\(863\) −9.31789e135 −0.278494 −0.139247 0.990258i \(-0.544468\pi\)
−0.139247 + 0.990258i \(0.544468\pi\)
\(864\) 6.21629e136 1.76053
\(865\) −4.35588e136 −1.16903
\(866\) −9.95680e136 −2.53243
\(867\) 7.30136e136 1.76001
\(868\) −2.99318e136 −0.683857
\(869\) −3.50926e136 −0.759969
\(870\) 1.29748e137 2.66353
\(871\) 1.75334e136 0.341210
\(872\) 8.85195e136 1.63314
\(873\) 1.88934e137 3.30482
\(874\) 6.71803e136 1.11419
\(875\) 6.56482e136 1.03240
\(876\) −1.52619e137 −2.27597
\(877\) 1.16539e137 1.64812 0.824061 0.566501i \(-0.191703\pi\)
0.824061 + 0.566501i \(0.191703\pi\)
\(878\) −1.71005e137 −2.29358
\(879\) −2.15394e137 −2.74000
\(880\) −9.69546e135 −0.116983
\(881\) −1.45824e137 −1.66897 −0.834487 0.551028i \(-0.814236\pi\)
−0.834487 + 0.551028i \(0.814236\pi\)
\(882\) 2.53770e136 0.275519
\(883\) 6.58283e136 0.678016 0.339008 0.940784i \(-0.389909\pi\)
0.339008 + 0.940784i \(0.389909\pi\)
\(884\) 4.11535e136 0.402139
\(885\) −2.37010e136 −0.219737
\(886\) 2.09544e137 1.84335
\(887\) −1.39279e137 −1.16262 −0.581310 0.813682i \(-0.697460\pi\)
−0.581310 + 0.813682i \(0.697460\pi\)
\(888\) −9.30482e136 −0.737064
\(889\) −1.75846e137 −1.32191
\(890\) −1.46484e136 −0.104509
\(891\) −1.21220e137 −0.820844
\(892\) 1.07272e137 0.689480
\(893\) 2.05327e137 1.25272
\(894\) −6.77941e136 −0.392643
\(895\) −1.81670e137 −0.998879
\(896\) 3.51436e137 1.83453
\(897\) 3.65229e137 1.81016
\(898\) −3.22506e136 −0.151771
\(899\) −7.58257e136 −0.338837
\(900\) 6.60297e135 0.0280196
\(901\) −3.36833e136 −0.135741
\(902\) 3.19322e137 1.22215
\(903\) −3.96223e137 −1.44032
\(904\) −1.09656e137 −0.378617
\(905\) 2.56397e137 0.840920
\(906\) −6.90876e137 −2.15248
\(907\) −2.41067e137 −0.713508 −0.356754 0.934198i \(-0.616117\pi\)
−0.356754 + 0.934198i \(0.616117\pi\)
\(908\) 7.82264e137 2.19969
\(909\) 8.96648e137 2.39553
\(910\) −9.73126e137 −2.47027
\(911\) −9.93661e136 −0.239681 −0.119841 0.992793i \(-0.538238\pi\)
−0.119841 + 0.992793i \(0.538238\pi\)
\(912\) 2.02468e137 0.464084
\(913\) 2.87515e137 0.626281
\(914\) 1.65723e137 0.343072
\(915\) 1.69035e137 0.332580
\(916\) −1.50222e138 −2.80927
\(917\) 5.33452e137 0.948246
\(918\) −3.61615e137 −0.611030
\(919\) 6.14650e137 0.987317 0.493658 0.869656i \(-0.335659\pi\)
0.493658 + 0.869656i \(0.335659\pi\)
\(920\) −5.53162e137 −0.844730
\(921\) 1.77375e137 0.257525
\(922\) −1.70360e137 −0.235169
\(923\) −9.86322e136 −0.129461
\(924\) −1.14070e138 −1.42373
\(925\) 2.03191e135 0.00241164
\(926\) 2.78549e138 3.14406
\(927\) −1.45715e138 −1.56422
\(928\) 6.69760e137 0.683815
\(929\) −6.24054e137 −0.606026 −0.303013 0.952986i \(-0.597993\pi\)
−0.303013 + 0.952986i \(0.597993\pi\)
\(930\) −1.23715e138 −1.14279
\(931\) −8.10215e136 −0.0711934
\(932\) −1.92904e138 −1.61251
\(933\) 2.08398e138 1.65729
\(934\) 2.15118e138 1.62760
\(935\) −9.89563e136 −0.0712367
\(936\) 5.74505e138 3.93520
\(937\) −8.37503e137 −0.545877 −0.272939 0.962031i \(-0.587996\pi\)
−0.272939 + 0.962031i \(0.587996\pi\)
\(938\) −6.55255e137 −0.406423
\(939\) −5.45265e138 −3.21853
\(940\) −4.00343e138 −2.24899
\(941\) −2.62324e138 −1.40256 −0.701278 0.712887i \(-0.747387\pi\)
−0.701278 + 0.712887i \(0.747387\pi\)
\(942\) 1.02708e139 5.22683
\(943\) 2.42182e138 1.17314
\(944\) 6.97307e136 0.0321534
\(945\) 5.41983e138 2.37907
\(946\) 1.33609e138 0.558340
\(947\) −2.87773e138 −1.14492 −0.572461 0.819932i \(-0.694011\pi\)
−0.572461 + 0.819932i \(0.694011\pi\)
\(948\) −1.42886e139 −5.41255
\(949\) 2.89973e138 1.04587
\(950\) −3.32600e136 −0.0114228
\(951\) −6.23201e138 −2.03814
\(952\) −6.49494e137 −0.202282
\(953\) 4.21352e136 0.0124976 0.00624878 0.999980i \(-0.498011\pi\)
0.00624878 + 0.999980i \(0.498011\pi\)
\(954\) −1.11347e139 −3.14543
\(955\) 1.93668e138 0.521077
\(956\) 8.47229e138 2.17124
\(957\) −2.88973e138 −0.705426
\(958\) 6.54207e136 0.0152131
\(959\) 7.21885e138 1.59920
\(960\) 1.32082e139 2.78760
\(961\) −4.25022e138 −0.854622
\(962\) 4.18634e138 0.802037
\(963\) 1.37515e139 2.51032
\(964\) 9.33874e138 1.62445
\(965\) −5.00396e138 −0.829456
\(966\) −1.36493e139 −2.15613
\(967\) −1.04448e139 −1.57242 −0.786211 0.617958i \(-0.787960\pi\)
−0.786211 + 0.617958i \(0.787960\pi\)
\(968\) −6.79515e138 −0.974978
\(969\) 2.06648e138 0.282602
\(970\) 1.85558e139 2.41877
\(971\) −8.38938e138 −1.04240 −0.521201 0.853434i \(-0.674516\pi\)
−0.521201 + 0.853434i \(0.674516\pi\)
\(972\) −1.59200e139 −1.88566
\(973\) 1.37028e139 1.54725
\(974\) −1.29975e139 −1.39916
\(975\) −1.80820e137 −0.0185580
\(976\) −4.97319e137 −0.0486652
\(977\) −4.89824e138 −0.457028 −0.228514 0.973541i \(-0.573387\pi\)
−0.228514 + 0.973541i \(0.573387\pi\)
\(978\) −2.60700e138 −0.231944
\(979\) 3.26245e137 0.0276789
\(980\) 1.57974e138 0.127813
\(981\) 3.97016e139 3.06336
\(982\) −2.49629e139 −1.83701
\(983\) −2.09544e139 −1.47074 −0.735371 0.677664i \(-0.762992\pi\)
−0.735371 + 0.677664i \(0.762992\pi\)
\(984\) 5.49069e139 3.67582
\(985\) 1.64412e139 1.04990
\(986\) −3.89614e138 −0.237333
\(987\) −4.17171e139 −2.42419
\(988\) −4.34339e139 −2.40786
\(989\) 1.01333e139 0.535948
\(990\) −3.27120e139 −1.65071
\(991\) −2.03468e139 −0.979648 −0.489824 0.871821i \(-0.662939\pi\)
−0.489824 + 0.871821i \(0.662939\pi\)
\(992\) −6.38616e138 −0.293391
\(993\) 5.08350e139 2.22855
\(994\) 3.68607e138 0.154204
\(995\) −1.96584e138 −0.0784830
\(996\) 1.17067e140 4.46042
\(997\) −1.57813e139 −0.573875 −0.286938 0.957949i \(-0.592637\pi\)
−0.286938 + 0.957949i \(0.592637\pi\)
\(998\) −3.78218e138 −0.131272
\(999\) −2.33159e139 −0.772425
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1.94.a.a.1.7 7
3.2 odd 2 9.94.a.b.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1.94.a.a.1.7 7 1.1 even 1 trivial
9.94.a.b.1.1 7 3.2 odd 2