Properties

Label 1.94.a.a.1.4
Level $1$
Weight $94$
Character 1.1
Self dual yes
Analytic conductor $54.773$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 94 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(54.7725430605\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Defining polynomial: \(x^{7} - x^{6} - 160477500301516091326739 x^{5} + 877016488484326647371325741724874 x^{4} + 7260529465737129707868752892581169765229378456 x^{3} - 20781038399188480098606854392326662967337072615105929280 x^{2} - 71309214652872234197294752847774640455181142633761719353245451878000 x - 1353216958878139720025204995487184336935523797943751976847532373756765247900000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{88}\cdot 3^{34}\cdot 5^{10}\cdot 7^{6}\cdot 13^{2}\cdot 19\cdot 23\cdot 31^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.98834e10\) of defining polynomial
Character \(\chi\) \(=\) 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-5.20495e12 q^{2} -1.59625e22 q^{3} -9.87643e27 q^{4} -3.34454e32 q^{5} +8.30840e34 q^{6} -2.46426e38 q^{7} +1.02954e41 q^{8} +1.91468e43 q^{9} +O(q^{10})\) \(q-5.20495e12 q^{2} -1.59625e22 q^{3} -9.87643e27 q^{4} -3.34454e32 q^{5} +8.30840e34 q^{6} -2.46426e38 q^{7} +1.02954e41 q^{8} +1.91468e43 q^{9} +1.74082e45 q^{10} +2.07952e48 q^{11} +1.57653e50 q^{12} +2.80456e51 q^{13} +1.28264e51 q^{14} +5.33873e54 q^{15} +9.72755e55 q^{16} -1.34822e57 q^{17} -9.96580e55 q^{18} +5.04213e59 q^{19} +3.30321e60 q^{20} +3.93358e60 q^{21} -1.08238e61 q^{22} -1.78821e63 q^{23} -1.64340e63 q^{24} +1.08855e64 q^{25} -1.45976e64 q^{26} +3.45602e66 q^{27} +2.43381e66 q^{28} -1.40036e68 q^{29} -2.77878e67 q^{30} +3.47640e69 q^{31} -1.52592e69 q^{32} -3.31943e70 q^{33} +7.01740e69 q^{34} +8.24184e70 q^{35} -1.89102e71 q^{36} +3.66085e72 q^{37} -2.62440e72 q^{38} -4.47677e73 q^{39} -3.44333e73 q^{40} +5.70517e74 q^{41} -2.04741e73 q^{42} +1.54775e75 q^{43} -2.05382e76 q^{44} -6.40373e75 q^{45} +9.30752e75 q^{46} +7.65372e77 q^{47} -1.55276e78 q^{48} -3.86679e78 q^{49} -5.66586e76 q^{50} +2.15210e79 q^{51} -2.76990e79 q^{52} -2.23629e80 q^{53} -1.79884e79 q^{54} -6.95504e80 q^{55} -2.53705e79 q^{56} -8.04851e81 q^{57} +7.28878e80 q^{58} -3.20335e82 q^{59} -5.27276e82 q^{60} -1.20647e83 q^{61} -1.80945e82 q^{62} -4.71827e81 q^{63} -9.55428e83 q^{64} -9.37996e83 q^{65} +1.72775e83 q^{66} +6.65601e84 q^{67} +1.33156e85 q^{68} +2.85443e85 q^{69} -4.28983e83 q^{70} +8.45355e85 q^{71} +1.97123e84 q^{72} +7.12259e86 q^{73} -1.90545e85 q^{74} -1.73760e86 q^{75} -4.97983e87 q^{76} -5.12448e86 q^{77} +2.33014e86 q^{78} -1.51164e87 q^{79} -3.25342e88 q^{80} -5.96787e88 q^{81} -2.96951e87 q^{82} +1.58486e89 q^{83} -3.88498e88 q^{84} +4.50917e89 q^{85} -8.05593e87 q^{86} +2.23532e90 q^{87} +2.14094e89 q^{88} -1.03503e90 q^{89} +3.33311e88 q^{90} -6.91117e89 q^{91} +1.76611e91 q^{92} -5.54922e91 q^{93} -3.98372e90 q^{94} -1.68636e92 q^{95} +2.43575e91 q^{96} +1.83199e92 q^{97} +2.01264e91 q^{98} +3.98161e91 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7q + 43735426713792q^{2} - \)\(36\!\cdots\!84\)\(q^{3} + \)\(37\!\cdots\!44\)\(q^{4} - \)\(24\!\cdots\!50\)\(q^{5} - \)\(34\!\cdots\!56\)\(q^{6} - \)\(92\!\cdots\!08\)\(q^{7} + \)\(62\!\cdots\!60\)\(q^{8} + \)\(36\!\cdots\!11\)\(q^{9} + O(q^{10}) \) \( 7q + 43735426713792q^{2} - \)\(36\!\cdots\!84\)\(q^{3} + \)\(37\!\cdots\!44\)\(q^{4} - \)\(24\!\cdots\!50\)\(q^{5} - \)\(34\!\cdots\!56\)\(q^{6} - \)\(92\!\cdots\!08\)\(q^{7} + \)\(62\!\cdots\!60\)\(q^{8} + \)\(36\!\cdots\!11\)\(q^{9} + \)\(56\!\cdots\!00\)\(q^{10} + \)\(10\!\cdots\!24\)\(q^{11} - \)\(16\!\cdots\!48\)\(q^{12} + \)\(19\!\cdots\!26\)\(q^{13} - \)\(82\!\cdots\!32\)\(q^{14} - \)\(16\!\cdots\!00\)\(q^{15} - \)\(18\!\cdots\!48\)\(q^{16} + \)\(80\!\cdots\!42\)\(q^{17} + \)\(79\!\cdots\!36\)\(q^{18} - \)\(49\!\cdots\!00\)\(q^{19} - \)\(58\!\cdots\!00\)\(q^{20} + \)\(54\!\cdots\!84\)\(q^{21} + \)\(34\!\cdots\!44\)\(q^{22} - \)\(25\!\cdots\!64\)\(q^{23} - \)\(29\!\cdots\!00\)\(q^{24} + \)\(18\!\cdots\!25\)\(q^{25} + \)\(79\!\cdots\!64\)\(q^{26} - \)\(10\!\cdots\!40\)\(q^{27} + \)\(19\!\cdots\!24\)\(q^{28} + \)\(11\!\cdots\!50\)\(q^{29} - \)\(64\!\cdots\!00\)\(q^{30} - \)\(11\!\cdots\!56\)\(q^{31} - \)\(70\!\cdots\!88\)\(q^{32} + \)\(66\!\cdots\!12\)\(q^{33} + \)\(80\!\cdots\!28\)\(q^{34} - \)\(16\!\cdots\!00\)\(q^{35} + \)\(52\!\cdots\!12\)\(q^{36} + \)\(11\!\cdots\!42\)\(q^{37} - \)\(42\!\cdots\!60\)\(q^{38} - \)\(20\!\cdots\!68\)\(q^{39} + \)\(76\!\cdots\!00\)\(q^{40} - \)\(50\!\cdots\!46\)\(q^{41} - \)\(54\!\cdots\!76\)\(q^{42} - \)\(72\!\cdots\!44\)\(q^{43} + \)\(94\!\cdots\!08\)\(q^{44} + \)\(16\!\cdots\!50\)\(q^{45} - \)\(63\!\cdots\!16\)\(q^{46} - \)\(37\!\cdots\!08\)\(q^{47} - \)\(41\!\cdots\!64\)\(q^{48} + \)\(25\!\cdots\!99\)\(q^{49} - \)\(31\!\cdots\!00\)\(q^{50} - \)\(55\!\cdots\!36\)\(q^{51} - \)\(55\!\cdots\!28\)\(q^{52} - \)\(36\!\cdots\!34\)\(q^{53} - \)\(19\!\cdots\!00\)\(q^{54} - \)\(35\!\cdots\!00\)\(q^{55} - \)\(12\!\cdots\!00\)\(q^{56} - \)\(13\!\cdots\!80\)\(q^{57} - \)\(73\!\cdots\!40\)\(q^{58} - \)\(11\!\cdots\!00\)\(q^{59} - \)\(46\!\cdots\!00\)\(q^{60} - \)\(32\!\cdots\!26\)\(q^{61} - \)\(99\!\cdots\!36\)\(q^{62} - \)\(22\!\cdots\!64\)\(q^{63} - \)\(47\!\cdots\!16\)\(q^{64} + \)\(24\!\cdots\!00\)\(q^{65} + \)\(12\!\cdots\!08\)\(q^{66} + \)\(97\!\cdots\!92\)\(q^{67} + \)\(51\!\cdots\!24\)\(q^{68} + \)\(12\!\cdots\!92\)\(q^{69} + \)\(43\!\cdots\!00\)\(q^{70} + \)\(42\!\cdots\!84\)\(q^{71} + \)\(11\!\cdots\!80\)\(q^{72} + \)\(24\!\cdots\!86\)\(q^{73} + \)\(98\!\cdots\!48\)\(q^{74} + \)\(94\!\cdots\!00\)\(q^{75} - \)\(98\!\cdots\!00\)\(q^{76} - \)\(16\!\cdots\!56\)\(q^{77} - \)\(73\!\cdots\!28\)\(q^{78} - \)\(43\!\cdots\!00\)\(q^{79} - \)\(88\!\cdots\!00\)\(q^{80} - \)\(70\!\cdots\!53\)\(q^{81} - \)\(23\!\cdots\!76\)\(q^{82} - \)\(20\!\cdots\!04\)\(q^{83} + \)\(16\!\cdots\!28\)\(q^{84} + \)\(16\!\cdots\!00\)\(q^{85} + \)\(32\!\cdots\!24\)\(q^{86} + \)\(65\!\cdots\!80\)\(q^{87} + \)\(63\!\cdots\!20\)\(q^{88} + \)\(55\!\cdots\!50\)\(q^{89} + \)\(19\!\cdots\!00\)\(q^{90} - \)\(18\!\cdots\!96\)\(q^{91} - \)\(81\!\cdots\!08\)\(q^{92} - \)\(12\!\cdots\!28\)\(q^{93} - \)\(30\!\cdots\!92\)\(q^{94} - \)\(21\!\cdots\!00\)\(q^{95} - \)\(22\!\cdots\!16\)\(q^{96} + \)\(43\!\cdots\!42\)\(q^{97} - \)\(69\!\cdots\!56\)\(q^{98} + \)\(30\!\cdots\!52\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.20495e12 −0.0523024 −0.0261512 0.999658i \(-0.508325\pi\)
−0.0261512 + 0.999658i \(0.508325\pi\)
\(3\) −1.59625e22 −1.03983 −0.519916 0.854218i \(-0.674037\pi\)
−0.519916 + 0.854218i \(0.674037\pi\)
\(4\) −9.87643e27 −0.997264
\(5\) −3.34454e32 −1.05252 −0.526262 0.850323i \(-0.676407\pi\)
−0.526262 + 0.850323i \(0.676407\pi\)
\(6\) 8.30840e34 0.0543857
\(7\) −2.46426e38 −0.124345 −0.0621725 0.998065i \(-0.519803\pi\)
−0.0621725 + 0.998065i \(0.519803\pi\)
\(8\) 1.02954e41 0.104462
\(9\) 1.91468e43 0.0812492
\(10\) 1.74082e45 0.0550495
\(11\) 2.07952e48 0.781993 0.390997 0.920392i \(-0.372130\pi\)
0.390997 + 0.920392i \(0.372130\pi\)
\(12\) 1.57653e50 1.03699
\(13\) 2.80456e51 0.446168 0.223084 0.974799i \(-0.428388\pi\)
0.223084 + 0.974799i \(0.428388\pi\)
\(14\) 1.28264e51 0.00650354
\(15\) 5.33873e54 1.09445
\(16\) 9.72755e55 0.991801
\(17\) −1.34822e57 −0.820135 −0.410068 0.912055i \(-0.634495\pi\)
−0.410068 + 0.912055i \(0.634495\pi\)
\(18\) −9.96580e55 −0.00424953
\(19\) 5.04213e59 1.74009 0.870046 0.492971i \(-0.164089\pi\)
0.870046 + 0.492971i \(0.164089\pi\)
\(20\) 3.30321e60 1.04964
\(21\) 3.93358e60 0.129298
\(22\) −1.08238e61 −0.0409001
\(23\) −1.78821e63 −0.855212 −0.427606 0.903965i \(-0.640643\pi\)
−0.427606 + 0.903965i \(0.640643\pi\)
\(24\) −1.64340e63 −0.108623
\(25\) 1.08855e64 0.107805
\(26\) −1.45976e64 −0.0233356
\(27\) 3.45602e66 0.955346
\(28\) 2.43381e66 0.124005
\(29\) −1.40036e68 −1.39551 −0.697753 0.716338i \(-0.745817\pi\)
−0.697753 + 0.716338i \(0.745817\pi\)
\(30\) −2.77878e67 −0.0572422
\(31\) 3.47640e69 1.55888 0.779438 0.626479i \(-0.215505\pi\)
0.779438 + 0.626479i \(0.215505\pi\)
\(32\) −1.52592e69 −0.156335
\(33\) −3.31943e70 −0.813141
\(34\) 7.01740e69 0.0428950
\(35\) 8.24184e70 0.130876
\(36\) −1.89102e71 −0.0810270
\(37\) 3.66085e72 0.438734 0.219367 0.975642i \(-0.429601\pi\)
0.219367 + 0.975642i \(0.429601\pi\)
\(38\) −2.62440e72 −0.0910109
\(39\) −4.47677e73 −0.463939
\(40\) −3.44333e73 −0.109948
\(41\) 5.70517e74 0.577856 0.288928 0.957351i \(-0.406701\pi\)
0.288928 + 0.957351i \(0.406701\pi\)
\(42\) −2.04741e73 −0.00676259
\(43\) 1.54775e75 0.171166 0.0855828 0.996331i \(-0.472725\pi\)
0.0855828 + 0.996331i \(0.472725\pi\)
\(44\) −2.05382e76 −0.779854
\(45\) −6.40373e75 −0.0855167
\(46\) 9.30752e75 0.0447296
\(47\) 7.65372e77 1.35308 0.676538 0.736408i \(-0.263480\pi\)
0.676538 + 0.736408i \(0.263480\pi\)
\(48\) −1.55276e78 −1.03131
\(49\) −3.86679e78 −0.984538
\(50\) −5.66586e76 −0.00563846
\(51\) 2.15210e79 0.852802
\(52\) −2.76990e79 −0.444947
\(53\) −2.23629e80 −1.48149 −0.740747 0.671784i \(-0.765528\pi\)
−0.740747 + 0.671784i \(0.765528\pi\)
\(54\) −1.79884e79 −0.0499669
\(55\) −6.95504e80 −0.823066
\(56\) −2.53705e79 −0.0129893
\(57\) −8.04851e81 −1.80940
\(58\) 7.28878e80 0.0729883
\(59\) −3.20335e82 −1.44872 −0.724361 0.689421i \(-0.757865\pi\)
−0.724361 + 0.689421i \(0.757865\pi\)
\(60\) −5.27276e82 −1.09145
\(61\) −1.20647e83 −1.15792 −0.578962 0.815354i \(-0.696542\pi\)
−0.578962 + 0.815354i \(0.696542\pi\)
\(62\) −1.80945e82 −0.0815329
\(63\) −4.71827e81 −0.0101029
\(64\) −9.55428e83 −0.983624
\(65\) −9.37996e83 −0.469602
\(66\) 1.72775e83 0.0425292
\(67\) 6.65601e84 0.814208 0.407104 0.913382i \(-0.366539\pi\)
0.407104 + 0.913382i \(0.366539\pi\)
\(68\) 1.33156e85 0.817892
\(69\) 2.85443e85 0.889276
\(70\) −4.28983e83 −0.00684513
\(71\) 8.45355e85 0.697471 0.348735 0.937221i \(-0.386611\pi\)
0.348735 + 0.937221i \(0.386611\pi\)
\(72\) 1.97123e84 0.00848743
\(73\) 7.12259e86 1.61482 0.807412 0.589988i \(-0.200868\pi\)
0.807412 + 0.589988i \(0.200868\pi\)
\(74\) −1.90545e85 −0.0229469
\(75\) −1.73760e86 −0.112099
\(76\) −4.97983e87 −1.73533
\(77\) −5.12448e86 −0.0972370
\(78\) 2.33014e86 0.0242651
\(79\) −1.51164e87 −0.0870537 −0.0435269 0.999052i \(-0.513859\pi\)
−0.0435269 + 0.999052i \(0.513859\pi\)
\(80\) −3.25342e88 −1.04389
\(81\) −5.96787e88 −1.07465
\(82\) −2.96951e87 −0.0302232
\(83\) 1.58486e89 0.918037 0.459019 0.888427i \(-0.348201\pi\)
0.459019 + 0.888427i \(0.348201\pi\)
\(84\) −3.88498e88 −0.128944
\(85\) 4.50917e89 0.863211
\(86\) −8.05593e87 −0.00895237
\(87\) 2.23532e90 1.45109
\(88\) 2.14094e89 0.0816883
\(89\) −1.03503e90 −0.233516 −0.116758 0.993160i \(-0.537250\pi\)
−0.116758 + 0.993160i \(0.537250\pi\)
\(90\) 3.33311e88 0.00447273
\(91\) −6.91117e89 −0.0554787
\(92\) 1.76611e91 0.852872
\(93\) −5.54922e91 −1.62097
\(94\) −3.98372e90 −0.0707691
\(95\) −1.68636e92 −1.83149
\(96\) 2.43575e91 0.162562
\(97\) 1.83199e92 0.755159 0.377579 0.925977i \(-0.376757\pi\)
0.377579 + 0.925977i \(0.376757\pi\)
\(98\) 2.01264e91 0.0514937
\(99\) 3.98161e91 0.0635363
\(100\) −1.07510e92 −0.107510
\(101\) 1.09411e93 0.688839 0.344420 0.938816i \(-0.388076\pi\)
0.344420 + 0.938816i \(0.388076\pi\)
\(102\) −1.12015e92 −0.0446036
\(103\) 6.53274e93 1.65259 0.826294 0.563239i \(-0.190445\pi\)
0.826294 + 0.563239i \(0.190445\pi\)
\(104\) 2.88739e92 0.0466074
\(105\) −1.31560e93 −0.136089
\(106\) 1.16398e93 0.0774857
\(107\) −2.96413e94 −1.27512 −0.637561 0.770400i \(-0.720057\pi\)
−0.637561 + 0.770400i \(0.720057\pi\)
\(108\) −3.41331e94 −0.952732
\(109\) 2.56283e94 0.466002 0.233001 0.972477i \(-0.425146\pi\)
0.233001 + 0.972477i \(0.425146\pi\)
\(110\) 3.62006e93 0.0430483
\(111\) −5.84364e94 −0.456210
\(112\) −2.39713e94 −0.123326
\(113\) −2.20850e95 −0.751536 −0.375768 0.926714i \(-0.622621\pi\)
−0.375768 + 0.926714i \(0.622621\pi\)
\(114\) 4.18921e94 0.0946360
\(115\) 5.98074e95 0.900130
\(116\) 1.38305e96 1.39169
\(117\) 5.36982e94 0.0362508
\(118\) 1.66732e95 0.0757716
\(119\) 3.32237e95 0.101980
\(120\) 5.49642e95 0.114328
\(121\) −2.74724e96 −0.388487
\(122\) 6.27963e95 0.0605622
\(123\) −9.10689e96 −0.600873
\(124\) −3.43345e97 −1.55461
\(125\) 3.01305e97 0.939056
\(126\) 2.45584e94 0.000528408 0
\(127\) −5.47224e97 −0.815253 −0.407627 0.913149i \(-0.633643\pi\)
−0.407627 + 0.913149i \(0.633643\pi\)
\(128\) 2.00849e97 0.207781
\(129\) −2.47059e97 −0.177983
\(130\) 4.88222e96 0.0245613
\(131\) 5.22366e98 1.84018 0.920089 0.391710i \(-0.128116\pi\)
0.920089 + 0.391710i \(0.128116\pi\)
\(132\) 3.27842e98 0.810917
\(133\) −1.24252e98 −0.216372
\(134\) −3.46442e97 −0.0425850
\(135\) −1.15588e99 −1.00552
\(136\) −1.38804e98 −0.0856727
\(137\) 1.27800e99 0.561079 0.280539 0.959843i \(-0.409487\pi\)
0.280539 + 0.959843i \(0.409487\pi\)
\(138\) −1.48571e98 −0.0465112
\(139\) −3.03718e99 −0.679646 −0.339823 0.940489i \(-0.610367\pi\)
−0.339823 + 0.940489i \(0.610367\pi\)
\(140\) −8.13999e98 −0.130518
\(141\) −1.22173e100 −1.40697
\(142\) −4.40003e98 −0.0364794
\(143\) 5.83212e99 0.348900
\(144\) 1.86251e99 0.0805831
\(145\) 4.68356e100 1.46880
\(146\) −3.70727e99 −0.0844591
\(147\) 6.17236e100 1.02375
\(148\) −3.61561e100 −0.437534
\(149\) −3.01665e99 −0.0266909 −0.0133455 0.999911i \(-0.504248\pi\)
−0.0133455 + 0.999911i \(0.504248\pi\)
\(150\) 9.04413e98 0.00586305
\(151\) −6.70032e100 −0.318910 −0.159455 0.987205i \(-0.550974\pi\)
−0.159455 + 0.987205i \(0.550974\pi\)
\(152\) 5.19106e100 0.181773
\(153\) −2.58141e100 −0.0666353
\(154\) 2.66727e99 0.00508572
\(155\) −1.16270e102 −1.64075
\(156\) 4.42145e101 0.462670
\(157\) −1.54216e102 −1.19894 −0.599468 0.800399i \(-0.704621\pi\)
−0.599468 + 0.800399i \(0.704621\pi\)
\(158\) 7.86798e99 0.00455312
\(159\) 3.56968e102 1.54050
\(160\) 5.10350e101 0.164546
\(161\) 4.40662e101 0.106341
\(162\) 3.10625e101 0.0562066
\(163\) 7.03093e102 0.955628 0.477814 0.878461i \(-0.341429\pi\)
0.477814 + 0.878461i \(0.341429\pi\)
\(164\) −5.63467e102 −0.576275
\(165\) 1.11020e103 0.855850
\(166\) −8.24912e101 −0.0480155
\(167\) −1.74320e103 −0.767417 −0.383709 0.923454i \(-0.625353\pi\)
−0.383709 + 0.923454i \(0.625353\pi\)
\(168\) 4.04977e101 0.0135067
\(169\) −3.16467e103 −0.800934
\(170\) −2.34700e102 −0.0451480
\(171\) 9.65407e102 0.141381
\(172\) −1.52862e103 −0.170697
\(173\) −1.25289e104 −1.06849 −0.534243 0.845331i \(-0.679403\pi\)
−0.534243 + 0.845331i \(0.679403\pi\)
\(174\) −1.16347e103 −0.0758956
\(175\) −2.68248e102 −0.0134050
\(176\) 2.02286e104 0.775581
\(177\) 5.11334e104 1.50643
\(178\) 5.38726e102 0.0122134
\(179\) 4.81939e104 0.842027 0.421013 0.907054i \(-0.361675\pi\)
0.421013 + 0.907054i \(0.361675\pi\)
\(180\) 6.32460e103 0.0852828
\(181\) −1.90449e105 −1.98484 −0.992420 0.122890i \(-0.960784\pi\)
−0.992420 + 0.122890i \(0.960784\pi\)
\(182\) 3.59722e102 0.00290167
\(183\) 1.92583e105 1.20405
\(184\) −1.84102e104 −0.0893368
\(185\) −1.22439e105 −0.461778
\(186\) 2.88834e104 0.0847805
\(187\) −2.80364e105 −0.641340
\(188\) −7.55914e105 −1.34937
\(189\) −8.51653e104 −0.118793
\(190\) 8.77743e104 0.0957911
\(191\) 6.29379e105 0.538097 0.269048 0.963127i \(-0.413291\pi\)
0.269048 + 0.963127i \(0.413291\pi\)
\(192\) 1.52510e106 1.02280
\(193\) 5.60111e105 0.295025 0.147513 0.989060i \(-0.452873\pi\)
0.147513 + 0.989060i \(0.452873\pi\)
\(194\) −9.53543e104 −0.0394966
\(195\) 1.49728e106 0.488307
\(196\) 3.81901e106 0.981845
\(197\) −6.48534e106 −1.31599 −0.657996 0.753021i \(-0.728596\pi\)
−0.657996 + 0.753021i \(0.728596\pi\)
\(198\) −2.07241e104 −0.00332310
\(199\) 3.45706e106 0.438570 0.219285 0.975661i \(-0.429628\pi\)
0.219285 + 0.975661i \(0.429628\pi\)
\(200\) 1.12070e105 0.0112615
\(201\) −1.06247e107 −0.846639
\(202\) −5.69480e105 −0.0360279
\(203\) 3.45085e106 0.173524
\(204\) −2.12550e107 −0.850469
\(205\) −1.90812e107 −0.608207
\(206\) −3.40026e106 −0.0864343
\(207\) −3.42384e106 −0.0694853
\(208\) 2.72815e107 0.442510
\(209\) 1.04852e108 1.36074
\(210\) 6.84765e105 0.00711778
\(211\) −3.50564e107 −0.292169 −0.146084 0.989272i \(-0.546667\pi\)
−0.146084 + 0.989272i \(0.546667\pi\)
\(212\) 2.20866e108 1.47744
\(213\) −1.34940e108 −0.725252
\(214\) 1.54281e107 0.0666919
\(215\) −5.17650e107 −0.180156
\(216\) 3.55809e107 0.0997970
\(217\) −8.56678e107 −0.193838
\(218\) −1.33394e107 −0.0243730
\(219\) −1.13694e109 −1.67914
\(220\) 6.86910e108 0.820814
\(221\) −3.78115e108 −0.365918
\(222\) 3.04158e107 0.0238609
\(223\) −3.78721e108 −0.241070 −0.120535 0.992709i \(-0.538461\pi\)
−0.120535 + 0.992709i \(0.538461\pi\)
\(224\) 3.76026e107 0.0194395
\(225\) 2.08423e107 0.00875908
\(226\) 1.14951e108 0.0393071
\(227\) −2.11337e109 −0.588538 −0.294269 0.955723i \(-0.595076\pi\)
−0.294269 + 0.955723i \(0.595076\pi\)
\(228\) 7.94906e109 1.80445
\(229\) 6.82619e109 1.26424 0.632118 0.774872i \(-0.282186\pi\)
0.632118 + 0.774872i \(0.282186\pi\)
\(230\) −3.11294e108 −0.0470789
\(231\) 8.17996e108 0.101110
\(232\) −1.44172e109 −0.145777
\(233\) −1.83357e110 −1.51791 −0.758956 0.651142i \(-0.774290\pi\)
−0.758956 + 0.651142i \(0.774290\pi\)
\(234\) −2.79496e107 −0.00189600
\(235\) −2.55982e110 −1.42414
\(236\) 3.16376e110 1.44476
\(237\) 2.41295e109 0.0905212
\(238\) −1.72927e108 −0.00533378
\(239\) −4.39834e110 −1.11631 −0.558157 0.829735i \(-0.688491\pi\)
−0.558157 + 0.829735i \(0.688491\pi\)
\(240\) 5.19328e110 1.08547
\(241\) −1.05972e111 −1.82557 −0.912785 0.408440i \(-0.866073\pi\)
−0.912785 + 0.408440i \(0.866073\pi\)
\(242\) 1.42992e109 0.0203188
\(243\) 1.38195e110 0.162107
\(244\) 1.19156e111 1.15476
\(245\) 1.29326e111 1.03625
\(246\) 4.74009e109 0.0314271
\(247\) 1.41409e111 0.776372
\(248\) 3.57908e110 0.162843
\(249\) −2.52984e111 −0.954604
\(250\) −1.56828e110 −0.0491149
\(251\) −4.74458e110 −0.123416 −0.0617078 0.998094i \(-0.519655\pi\)
−0.0617078 + 0.998094i \(0.519655\pi\)
\(252\) 4.65997e109 0.0100753
\(253\) −3.71861e111 −0.668770
\(254\) 2.84827e110 0.0426397
\(255\) −7.19778e111 −0.897594
\(256\) 9.35756e111 0.972757
\(257\) −1.10497e112 −0.958210 −0.479105 0.877758i \(-0.659039\pi\)
−0.479105 + 0.877758i \(0.659039\pi\)
\(258\) 1.28593e110 0.00930895
\(259\) −9.02130e110 −0.0545544
\(260\) 9.26405e111 0.468317
\(261\) −2.68123e111 −0.113384
\(262\) −2.71889e111 −0.0962457
\(263\) 2.33330e112 0.691877 0.345938 0.938257i \(-0.387561\pi\)
0.345938 + 0.938257i \(0.387561\pi\)
\(264\) −3.41748e111 −0.0849421
\(265\) 7.47937e112 1.55931
\(266\) 6.46722e110 0.0113168
\(267\) 1.65216e112 0.242817
\(268\) −6.57376e112 −0.811981
\(269\) −4.45387e111 −0.0462654 −0.0231327 0.999732i \(-0.507364\pi\)
−0.0231327 + 0.999732i \(0.507364\pi\)
\(270\) 6.01629e111 0.0525913
\(271\) −1.06412e113 −0.783282 −0.391641 0.920118i \(-0.628093\pi\)
−0.391641 + 0.920118i \(0.628093\pi\)
\(272\) −1.31149e113 −0.813411
\(273\) 1.10320e112 0.0576885
\(274\) −6.65191e111 −0.0293457
\(275\) 2.26367e112 0.0843028
\(276\) −2.81916e113 −0.886843
\(277\) 3.13894e113 0.834590 0.417295 0.908771i \(-0.362978\pi\)
0.417295 + 0.908771i \(0.362978\pi\)
\(278\) 1.58084e112 0.0355471
\(279\) 6.65620e112 0.126657
\(280\) 8.48527e111 0.0136715
\(281\) 7.34181e113 1.00221 0.501105 0.865386i \(-0.332927\pi\)
0.501105 + 0.865386i \(0.332927\pi\)
\(282\) 6.35901e112 0.0735879
\(283\) −4.42262e113 −0.434120 −0.217060 0.976158i \(-0.569647\pi\)
−0.217060 + 0.976158i \(0.569647\pi\)
\(284\) −8.34909e113 −0.695563
\(285\) 2.69186e114 1.90444
\(286\) −3.03559e112 −0.0182483
\(287\) −1.40591e113 −0.0718535
\(288\) −2.92164e112 −0.0127021
\(289\) −8.84708e113 −0.327379
\(290\) −2.43777e113 −0.0768219
\(291\) −2.92432e114 −0.785238
\(292\) −7.03458e114 −1.61041
\(293\) −2.57943e114 −0.503709 −0.251854 0.967765i \(-0.581040\pi\)
−0.251854 + 0.967765i \(0.581040\pi\)
\(294\) −3.21268e113 −0.0535448
\(295\) 1.07137e115 1.52481
\(296\) 3.76898e113 0.0458309
\(297\) 7.18685e114 0.747074
\(298\) 1.57015e112 0.00139600
\(299\) −5.01513e114 −0.381568
\(300\) 1.71613e114 0.111792
\(301\) −3.81405e113 −0.0212836
\(302\) 3.48748e113 0.0166797
\(303\) −1.74648e115 −0.716277
\(304\) 4.90476e115 1.72582
\(305\) 4.03510e115 1.21874
\(306\) 1.34361e113 0.00348519
\(307\) −4.52736e115 −1.00905 −0.504523 0.863399i \(-0.668331\pi\)
−0.504523 + 0.863399i \(0.668331\pi\)
\(308\) 5.06116e114 0.0969710
\(309\) −1.04279e116 −1.71841
\(310\) 6.05178e114 0.0858153
\(311\) −6.25405e115 −0.763490 −0.381745 0.924268i \(-0.624677\pi\)
−0.381745 + 0.924268i \(0.624677\pi\)
\(312\) −4.60900e114 −0.0484639
\(313\) 1.19220e115 0.108028 0.0540142 0.998540i \(-0.482798\pi\)
0.0540142 + 0.998540i \(0.482798\pi\)
\(314\) 8.02687e114 0.0627072
\(315\) 1.57805e114 0.0106336
\(316\) 1.49296e115 0.0868156
\(317\) 2.10233e116 1.05547 0.527733 0.849410i \(-0.323042\pi\)
0.527733 + 0.849410i \(0.323042\pi\)
\(318\) −1.85800e115 −0.0805721
\(319\) −2.91207e116 −1.09128
\(320\) 3.19547e116 1.03529
\(321\) 4.73150e116 1.32591
\(322\) −2.29362e114 −0.00556190
\(323\) −6.79790e116 −1.42711
\(324\) 5.89413e116 1.07171
\(325\) 3.05291e115 0.0480991
\(326\) −3.65956e115 −0.0499816
\(327\) −4.09092e116 −0.484563
\(328\) 5.87368e115 0.0603638
\(329\) −1.88608e116 −0.168248
\(330\) −5.77853e115 −0.0447630
\(331\) −7.97816e116 −0.536909 −0.268455 0.963292i \(-0.586513\pi\)
−0.268455 + 0.963292i \(0.586513\pi\)
\(332\) −1.56528e117 −0.915526
\(333\) 7.00935e115 0.0356468
\(334\) 9.07326e115 0.0401377
\(335\) −2.22613e117 −0.856973
\(336\) 3.82642e116 0.128238
\(337\) 5.50832e117 1.60779 0.803894 0.594773i \(-0.202758\pi\)
0.803894 + 0.594773i \(0.202758\pi\)
\(338\) 1.64719e116 0.0418908
\(339\) 3.52532e117 0.781471
\(340\) −4.45345e117 −0.860850
\(341\) 7.22925e117 1.21903
\(342\) −5.02489e115 −0.00739457
\(343\) 1.92072e117 0.246767
\(344\) 1.59346e116 0.0178802
\(345\) −9.54676e117 −0.935983
\(346\) 6.52122e116 0.0558843
\(347\) 1.41492e118 1.06025 0.530127 0.847918i \(-0.322144\pi\)
0.530127 + 0.847918i \(0.322144\pi\)
\(348\) −2.20770e118 −1.44712
\(349\) −6.54379e117 −0.375359 −0.187680 0.982230i \(-0.560097\pi\)
−0.187680 + 0.982230i \(0.560097\pi\)
\(350\) 1.39622e115 0.000701114 0
\(351\) 9.69259e117 0.426244
\(352\) −3.17317e117 −0.122253
\(353\) −1.68481e118 −0.568888 −0.284444 0.958693i \(-0.591809\pi\)
−0.284444 + 0.958693i \(0.591809\pi\)
\(354\) −2.66147e117 −0.0787897
\(355\) −2.82733e118 −0.734104
\(356\) 1.02224e118 0.232877
\(357\) −5.30333e117 −0.106042
\(358\) −2.50846e117 −0.0440400
\(359\) 5.68638e118 0.876888 0.438444 0.898758i \(-0.355530\pi\)
0.438444 + 0.898758i \(0.355530\pi\)
\(360\) −6.59287e116 −0.00893322
\(361\) 1.70269e119 2.02792
\(362\) 9.91278e117 0.103812
\(363\) 4.38528e118 0.403961
\(364\) 6.82576e117 0.0553270
\(365\) −2.38218e119 −1.69964
\(366\) −1.00239e118 −0.0629745
\(367\) 1.30818e118 0.0723928 0.0361964 0.999345i \(-0.488476\pi\)
0.0361964 + 0.999345i \(0.488476\pi\)
\(368\) −1.73949e119 −0.848200
\(369\) 1.09236e118 0.0469503
\(370\) 6.37287e117 0.0241521
\(371\) 5.51081e118 0.184216
\(372\) 5.48064e119 1.61653
\(373\) −6.77024e119 −1.76256 −0.881279 0.472597i \(-0.843317\pi\)
−0.881279 + 0.472597i \(0.843317\pi\)
\(374\) 1.45928e118 0.0335436
\(375\) −4.80959e119 −0.976460
\(376\) 7.87977e118 0.141345
\(377\) −3.92738e119 −0.622630
\(378\) 4.43281e117 0.00621313
\(379\) 6.89871e118 0.0855154 0.0427577 0.999085i \(-0.486386\pi\)
0.0427577 + 0.999085i \(0.486386\pi\)
\(380\) 1.66553e120 1.82648
\(381\) 8.73508e119 0.847726
\(382\) −3.27588e118 −0.0281438
\(383\) 4.25482e119 0.323697 0.161848 0.986816i \(-0.448254\pi\)
0.161848 + 0.986816i \(0.448254\pi\)
\(384\) −3.20605e119 −0.216057
\(385\) 1.71391e119 0.102344
\(386\) −2.91535e118 −0.0154305
\(387\) 2.96344e118 0.0139071
\(388\) −1.80936e120 −0.753093
\(389\) −1.18067e120 −0.435985 −0.217992 0.975950i \(-0.569951\pi\)
−0.217992 + 0.975950i \(0.569951\pi\)
\(390\) −7.79325e118 −0.0255396
\(391\) 2.41089e120 0.701389
\(392\) −3.98100e119 −0.102847
\(393\) −8.33828e120 −1.91347
\(394\) 3.37559e119 0.0688295
\(395\) 5.05573e119 0.0916261
\(396\) −3.93241e119 −0.0633625
\(397\) 4.35484e120 0.624041 0.312021 0.950075i \(-0.398994\pi\)
0.312021 + 0.950075i \(0.398994\pi\)
\(398\) −1.79938e119 −0.0229383
\(399\) 1.98337e120 0.224990
\(400\) 1.05890e120 0.106921
\(401\) 1.70110e119 0.0152938 0.00764691 0.999971i \(-0.497566\pi\)
0.00764691 + 0.999971i \(0.497566\pi\)
\(402\) 5.53008e119 0.0442812
\(403\) 9.74977e120 0.695520
\(404\) −1.08059e121 −0.686955
\(405\) 1.99598e121 1.13109
\(406\) −1.79615e119 −0.00907574
\(407\) 7.61281e120 0.343087
\(408\) 2.21566e120 0.0890851
\(409\) 7.63285e120 0.273875 0.136938 0.990580i \(-0.456274\pi\)
0.136938 + 0.990580i \(0.456274\pi\)
\(410\) 9.93166e119 0.0318107
\(411\) −2.04001e121 −0.583427
\(412\) −6.45202e121 −1.64807
\(413\) 7.89389e120 0.180141
\(414\) 1.78209e119 0.00363425
\(415\) −5.30064e121 −0.966255
\(416\) −4.27952e120 −0.0697517
\(417\) 4.84811e121 0.706717
\(418\) −5.45750e120 −0.0711699
\(419\) −3.78980e121 −0.442246 −0.221123 0.975246i \(-0.570972\pi\)
−0.221123 + 0.975246i \(0.570972\pi\)
\(420\) 1.29935e121 0.135717
\(421\) 1.35355e122 1.26578 0.632889 0.774242i \(-0.281869\pi\)
0.632889 + 0.774242i \(0.281869\pi\)
\(422\) 1.82467e120 0.0152811
\(423\) 1.46544e121 0.109936
\(424\) −2.30234e121 −0.154759
\(425\) −1.46761e121 −0.0884147
\(426\) 7.02355e120 0.0379324
\(427\) 2.97307e121 0.143982
\(428\) 2.92750e122 1.27163
\(429\) −9.30954e121 −0.362797
\(430\) 2.69434e120 0.00942257
\(431\) −3.82844e122 −1.20179 −0.600895 0.799328i \(-0.705189\pi\)
−0.600895 + 0.799328i \(0.705189\pi\)
\(432\) 3.36186e122 0.947513
\(433\) 3.72282e122 0.942290 0.471145 0.882056i \(-0.343841\pi\)
0.471145 + 0.882056i \(0.343841\pi\)
\(434\) 4.45896e120 0.0101382
\(435\) −7.47613e122 −1.52731
\(436\) −2.53116e122 −0.464727
\(437\) −9.01638e122 −1.48815
\(438\) 5.91774e121 0.0878232
\(439\) −5.30815e121 −0.0708505 −0.0354253 0.999372i \(-0.511279\pi\)
−0.0354253 + 0.999372i \(0.511279\pi\)
\(440\) −7.16046e121 −0.0859788
\(441\) −7.40366e121 −0.0799930
\(442\) 1.96807e121 0.0191384
\(443\) 2.18090e123 1.90924 0.954622 0.297819i \(-0.0962593\pi\)
0.954622 + 0.297819i \(0.0962593\pi\)
\(444\) 5.77143e122 0.454962
\(445\) 3.46169e122 0.245781
\(446\) 1.97122e121 0.0126085
\(447\) 4.81534e121 0.0277541
\(448\) 2.35443e122 0.122309
\(449\) −2.75797e123 −1.29162 −0.645811 0.763498i \(-0.723480\pi\)
−0.645811 + 0.763498i \(0.723480\pi\)
\(450\) −1.08483e120 −0.000458121 0
\(451\) 1.18640e123 0.451879
\(452\) 2.18121e123 0.749480
\(453\) 1.06954e123 0.331612
\(454\) 1.10000e122 0.0307819
\(455\) 2.31147e122 0.0583927
\(456\) −8.28623e122 −0.189013
\(457\) −3.11961e123 −0.642684 −0.321342 0.946963i \(-0.604134\pi\)
−0.321342 + 0.946963i \(0.604134\pi\)
\(458\) −3.55299e122 −0.0661226
\(459\) −4.65946e123 −0.783513
\(460\) −5.90683e123 −0.897668
\(461\) −4.69038e123 −0.644340 −0.322170 0.946682i \(-0.604412\pi\)
−0.322170 + 0.946682i \(0.604412\pi\)
\(462\) −4.25763e121 −0.00528830
\(463\) 1.16779e124 1.31174 0.655871 0.754873i \(-0.272302\pi\)
0.655871 + 0.754873i \(0.272302\pi\)
\(464\) −1.36221e124 −1.38406
\(465\) 1.85596e124 1.70611
\(466\) 9.54362e122 0.0793904
\(467\) 1.86132e123 0.140148 0.0700741 0.997542i \(-0.477676\pi\)
0.0700741 + 0.997542i \(0.477676\pi\)
\(468\) −5.30347e122 −0.0361516
\(469\) −1.64022e123 −0.101243
\(470\) 1.33237e123 0.0744861
\(471\) 2.46168e124 1.24669
\(472\) −3.29796e123 −0.151336
\(473\) 3.21857e123 0.133850
\(474\) −1.25593e122 −0.00473447
\(475\) 5.48863e123 0.187591
\(476\) −3.28131e123 −0.101701
\(477\) −4.28178e123 −0.120370
\(478\) 2.28931e123 0.0583859
\(479\) −6.91509e124 −1.60028 −0.800141 0.599812i \(-0.795242\pi\)
−0.800141 + 0.599812i \(0.795242\pi\)
\(480\) −8.14646e123 −0.171101
\(481\) 1.02671e124 0.195749
\(482\) 5.51578e123 0.0954817
\(483\) −7.03407e123 −0.110577
\(484\) 2.71329e124 0.387424
\(485\) −6.12718e124 −0.794822
\(486\) −7.19298e122 −0.00847856
\(487\) 3.42647e124 0.367071 0.183536 0.983013i \(-0.441246\pi\)
0.183536 + 0.983013i \(0.441246\pi\)
\(488\) −1.24211e124 −0.120959
\(489\) −1.12231e125 −0.993692
\(490\) −6.73137e123 −0.0541983
\(491\) 9.44249e124 0.691508 0.345754 0.938325i \(-0.387623\pi\)
0.345754 + 0.938325i \(0.387623\pi\)
\(492\) 8.99435e124 0.599229
\(493\) 1.88799e125 1.14450
\(494\) −7.36029e123 −0.0406061
\(495\) −1.33167e124 −0.0668735
\(496\) 3.38169e125 1.54609
\(497\) −2.08318e124 −0.0867270
\(498\) 1.31677e124 0.0499281
\(499\) −3.71278e125 −1.28240 −0.641200 0.767374i \(-0.721563\pi\)
−0.641200 + 0.767374i \(0.721563\pi\)
\(500\) −2.97582e125 −0.936487
\(501\) 2.78259e125 0.797984
\(502\) 2.46953e123 0.00645493
\(503\) −5.04296e125 −1.20164 −0.600820 0.799385i \(-0.705159\pi\)
−0.600820 + 0.799385i \(0.705159\pi\)
\(504\) −4.85763e122 −0.00105537
\(505\) −3.65931e125 −0.725019
\(506\) 1.93552e124 0.0349782
\(507\) 5.05161e125 0.832837
\(508\) 5.40462e125 0.813023
\(509\) −1.02099e126 −1.40167 −0.700836 0.713323i \(-0.747189\pi\)
−0.700836 + 0.713323i \(0.747189\pi\)
\(510\) 3.74640e124 0.0469463
\(511\) −1.75519e125 −0.200795
\(512\) −2.47617e125 −0.258659
\(513\) 1.74257e126 1.66239
\(514\) 5.75132e124 0.0501167
\(515\) −2.18491e126 −1.73939
\(516\) 2.44006e125 0.177496
\(517\) 1.59160e126 1.05810
\(518\) 4.69554e123 0.00285333
\(519\) 1.99992e126 1.11104
\(520\) −9.65700e124 −0.0490554
\(521\) 1.22845e126 0.570696 0.285348 0.958424i \(-0.407891\pi\)
0.285348 + 0.958424i \(0.407891\pi\)
\(522\) 1.39557e124 0.00593025
\(523\) 3.73258e126 1.45105 0.725523 0.688198i \(-0.241598\pi\)
0.725523 + 0.688198i \(0.241598\pi\)
\(524\) −5.15911e126 −1.83514
\(525\) 4.28191e124 0.0139390
\(526\) −1.21447e125 −0.0361868
\(527\) −4.68695e126 −1.27849
\(528\) −3.22900e126 −0.806474
\(529\) −1.17440e126 −0.268613
\(530\) −3.89297e125 −0.0815555
\(531\) −6.13338e125 −0.117708
\(532\) 1.22716e126 0.215780
\(533\) 1.60005e126 0.257821
\(534\) −8.59942e124 −0.0126999
\(535\) 9.91367e126 1.34210
\(536\) 6.85260e125 0.0850535
\(537\) −7.69295e126 −0.875566
\(538\) 2.31822e124 0.00241979
\(539\) −8.04106e126 −0.769902
\(540\) 1.14160e127 1.00277
\(541\) −7.69343e126 −0.620079 −0.310040 0.950724i \(-0.600342\pi\)
−0.310040 + 0.950724i \(0.600342\pi\)
\(542\) 5.53868e125 0.0409675
\(543\) 3.04005e127 2.06390
\(544\) 2.05727e126 0.128216
\(545\) −8.57149e126 −0.490478
\(546\) −5.74207e124 −0.00301725
\(547\) 2.71689e127 1.31118 0.655589 0.755118i \(-0.272420\pi\)
0.655589 + 0.755118i \(0.272420\pi\)
\(548\) −1.26221e127 −0.559544
\(549\) −2.31001e126 −0.0940805
\(550\) −1.17823e125 −0.00440924
\(551\) −7.06079e127 −2.42831
\(552\) 2.93874e126 0.0928952
\(553\) 3.72507e125 0.0108247
\(554\) −1.63380e126 −0.0436511
\(555\) 1.95443e127 0.480171
\(556\) 2.99965e127 0.677787
\(557\) −8.81073e127 −1.83124 −0.915620 0.402045i \(-0.868299\pi\)
−0.915620 + 0.402045i \(0.868299\pi\)
\(558\) −3.46452e125 −0.00662449
\(559\) 4.34074e126 0.0763686
\(560\) 8.01729e126 0.129803
\(561\) 4.47532e127 0.666885
\(562\) −3.82137e126 −0.0524180
\(563\) −6.45622e127 −0.815338 −0.407669 0.913130i \(-0.633658\pi\)
−0.407669 + 0.913130i \(0.633658\pi\)
\(564\) 1.20663e128 1.40312
\(565\) 7.38643e127 0.791009
\(566\) 2.30195e126 0.0227055
\(567\) 1.47064e127 0.133627
\(568\) 8.70323e126 0.0728589
\(569\) 5.12368e127 0.395241 0.197621 0.980279i \(-0.436679\pi\)
0.197621 + 0.980279i \(0.436679\pi\)
\(570\) −1.40110e127 −0.0996066
\(571\) −3.30044e127 −0.216268 −0.108134 0.994136i \(-0.534488\pi\)
−0.108134 + 0.994136i \(0.534488\pi\)
\(572\) −5.76006e127 −0.347946
\(573\) −1.00465e128 −0.559530
\(574\) 7.31766e125 0.00375811
\(575\) −1.94656e127 −0.0921961
\(576\) −1.82934e127 −0.0799187
\(577\) 2.92806e128 1.18006 0.590031 0.807381i \(-0.299116\pi\)
0.590031 + 0.807381i \(0.299116\pi\)
\(578\) 4.60486e126 0.0171227
\(579\) −8.94077e127 −0.306776
\(580\) −4.62568e128 −1.46479
\(581\) −3.90552e127 −0.114153
\(582\) 1.52209e127 0.0410698
\(583\) −4.65041e128 −1.15852
\(584\) 7.33296e127 0.168687
\(585\) −1.79596e127 −0.0381548
\(586\) 1.34258e127 0.0263452
\(587\) 2.06516e128 0.374353 0.187176 0.982326i \(-0.440066\pi\)
0.187176 + 0.982326i \(0.440066\pi\)
\(588\) −6.09609e128 −1.02095
\(589\) 1.75285e129 2.71259
\(590\) −5.57644e127 −0.0797514
\(591\) 1.03522e129 1.36841
\(592\) 3.56111e128 0.435137
\(593\) −8.47498e128 −0.957404 −0.478702 0.877977i \(-0.658893\pi\)
−0.478702 + 0.877977i \(0.658893\pi\)
\(594\) −3.74072e127 −0.0390737
\(595\) −1.11118e128 −0.107336
\(596\) 2.97938e127 0.0266179
\(597\) −5.51834e128 −0.456039
\(598\) 2.61035e127 0.0199569
\(599\) 3.98262e128 0.281723 0.140861 0.990029i \(-0.455013\pi\)
0.140861 + 0.990029i \(0.455013\pi\)
\(600\) −1.78892e127 −0.0117101
\(601\) −2.03200e129 −1.23101 −0.615505 0.788133i \(-0.711048\pi\)
−0.615505 + 0.788133i \(0.711048\pi\)
\(602\) 1.98519e126 0.00111318
\(603\) 1.27441e128 0.0661538
\(604\) 6.61753e128 0.318037
\(605\) 9.18825e128 0.408891
\(606\) 9.09032e127 0.0374630
\(607\) −3.34725e129 −1.27766 −0.638828 0.769349i \(-0.720581\pi\)
−0.638828 + 0.769349i \(0.720581\pi\)
\(608\) −7.69388e128 −0.272038
\(609\) −5.50842e128 −0.180436
\(610\) −2.10025e128 −0.0637431
\(611\) 2.14653e129 0.603698
\(612\) 2.54951e128 0.0664531
\(613\) −3.69786e129 −0.893383 −0.446692 0.894688i \(-0.647398\pi\)
−0.446692 + 0.894688i \(0.647398\pi\)
\(614\) 2.35647e128 0.0527755
\(615\) 3.04584e129 0.632432
\(616\) −5.27584e127 −0.0101575
\(617\) 9.34186e129 1.66791 0.833956 0.551830i \(-0.186070\pi\)
0.833956 + 0.551830i \(0.186070\pi\)
\(618\) 5.42767e128 0.0898771
\(619\) 1.99467e128 0.0306377 0.0153188 0.999883i \(-0.495124\pi\)
0.0153188 + 0.999883i \(0.495124\pi\)
\(620\) 1.14833e130 1.63626
\(621\) −6.18007e129 −0.817023
\(622\) 3.25520e128 0.0399324
\(623\) 2.55058e128 0.0290365
\(624\) −4.35481e129 −0.460135
\(625\) −1.11765e130 −1.09618
\(626\) −6.20535e127 −0.00565014
\(627\) −1.67370e130 −1.41494
\(628\) 1.52311e130 1.19566
\(629\) −4.93562e129 −0.359822
\(630\) −8.21365e126 −0.000556161 0
\(631\) −3.91510e129 −0.246251 −0.123125 0.992391i \(-0.539292\pi\)
−0.123125 + 0.992391i \(0.539292\pi\)
\(632\) −1.55628e128 −0.00909378
\(633\) 5.59589e129 0.303806
\(634\) −1.09425e129 −0.0552034
\(635\) 1.83022e130 0.858073
\(636\) −3.52557e130 −1.53629
\(637\) −1.08446e130 −0.439269
\(638\) 1.51572e129 0.0570764
\(639\) 1.61858e129 0.0566690
\(640\) −6.71748e129 −0.218694
\(641\) 3.64405e130 1.10328 0.551640 0.834083i \(-0.314002\pi\)
0.551640 + 0.834083i \(0.314002\pi\)
\(642\) −2.46272e129 −0.0693483
\(643\) 4.68261e130 1.22653 0.613264 0.789878i \(-0.289856\pi\)
0.613264 + 0.789878i \(0.289856\pi\)
\(644\) −4.35216e129 −0.106050
\(645\) 8.26300e129 0.187332
\(646\) 3.53827e129 0.0746412
\(647\) 6.34581e130 1.24577 0.622885 0.782313i \(-0.285960\pi\)
0.622885 + 0.782313i \(0.285960\pi\)
\(648\) −6.14414e129 −0.112260
\(649\) −6.66142e130 −1.13289
\(650\) −1.58902e128 −0.00251570
\(651\) 1.36747e130 0.201559
\(652\) −6.94404e130 −0.953014
\(653\) 9.09354e130 1.16217 0.581085 0.813843i \(-0.302628\pi\)
0.581085 + 0.813843i \(0.302628\pi\)
\(654\) 2.12930e129 0.0253438
\(655\) −1.74708e131 −1.93683
\(656\) 5.54974e130 0.573118
\(657\) 1.36375e130 0.131203
\(658\) 9.81693e128 0.00879978
\(659\) −1.50199e131 −1.25457 −0.627284 0.778791i \(-0.715833\pi\)
−0.627284 + 0.778791i \(0.715833\pi\)
\(660\) −1.09648e131 −0.853509
\(661\) 5.08430e130 0.368861 0.184431 0.982846i \(-0.440956\pi\)
0.184431 + 0.982846i \(0.440956\pi\)
\(662\) 4.15259e129 0.0280816
\(663\) 6.03567e130 0.380493
\(664\) 1.63167e130 0.0958997
\(665\) 4.15565e130 0.227736
\(666\) −3.64833e128 −0.00186441
\(667\) 2.50413e131 1.19345
\(668\) 1.72166e131 0.765318
\(669\) 6.04533e130 0.250672
\(670\) 1.15869e130 0.0448217
\(671\) −2.50888e131 −0.905489
\(672\) −6.00232e129 −0.0202138
\(673\) −1.25378e131 −0.394022 −0.197011 0.980401i \(-0.563123\pi\)
−0.197011 + 0.980401i \(0.563123\pi\)
\(674\) −2.86705e130 −0.0840911
\(675\) 3.76205e130 0.102991
\(676\) 3.12557e131 0.798743
\(677\) 1.65408e131 0.394623 0.197312 0.980341i \(-0.436779\pi\)
0.197312 + 0.980341i \(0.436779\pi\)
\(678\) −1.83491e130 −0.0408728
\(679\) −4.51452e130 −0.0939002
\(680\) 4.64236e130 0.0901725
\(681\) 3.37348e131 0.611980
\(682\) −3.76278e130 −0.0637582
\(683\) −1.09448e132 −1.73239 −0.866194 0.499708i \(-0.833441\pi\)
−0.866194 + 0.499708i \(0.833441\pi\)
\(684\) −9.53477e130 −0.140994
\(685\) −4.27432e131 −0.590548
\(686\) −9.99725e129 −0.0129065
\(687\) −1.08963e132 −1.31459
\(688\) 1.50558e131 0.169762
\(689\) −6.27180e131 −0.660995
\(690\) 4.96904e130 0.0489542
\(691\) 1.49686e132 1.37864 0.689320 0.724457i \(-0.257909\pi\)
0.689320 + 0.724457i \(0.257909\pi\)
\(692\) 1.23741e132 1.06556
\(693\) −9.81174e129 −0.00790043
\(694\) −7.36456e130 −0.0554538
\(695\) 1.01580e132 0.715343
\(696\) 2.30134e131 0.151583
\(697\) −7.69182e131 −0.473920
\(698\) 3.40601e130 0.0196322
\(699\) 2.92684e132 1.57837
\(700\) 2.64933e130 0.0133683
\(701\) −4.03873e132 −1.90703 −0.953514 0.301349i \(-0.902563\pi\)
−0.953514 + 0.301349i \(0.902563\pi\)
\(702\) −5.04494e130 −0.0222936
\(703\) 1.84585e132 0.763438
\(704\) −1.98683e132 −0.769187
\(705\) 4.08611e132 1.48087
\(706\) 8.76933e130 0.0297542
\(707\) −2.69618e131 −0.0856538
\(708\) −5.05016e132 −1.50231
\(709\) 2.29100e132 0.638228 0.319114 0.947716i \(-0.396615\pi\)
0.319114 + 0.947716i \(0.396615\pi\)
\(710\) 1.47161e131 0.0383954
\(711\) −2.89430e130 −0.00707305
\(712\) −1.06560e131 −0.0243935
\(713\) −6.21653e132 −1.33317
\(714\) 2.76036e130 0.00554623
\(715\) −1.95058e132 −0.367225
\(716\) −4.75983e132 −0.839723
\(717\) 7.02085e132 1.16078
\(718\) −2.95973e131 −0.0458633
\(719\) −4.76634e132 −0.692296 −0.346148 0.938180i \(-0.612510\pi\)
−0.346148 + 0.938180i \(0.612510\pi\)
\(720\) −6.22926e131 −0.0848155
\(721\) −1.60984e132 −0.205491
\(722\) −8.86240e131 −0.106065
\(723\) 1.69158e133 1.89829
\(724\) 1.88096e133 1.97941
\(725\) −1.52436e132 −0.150443
\(726\) −2.28251e131 −0.0211281
\(727\) −1.12628e133 −0.977903 −0.488952 0.872311i \(-0.662621\pi\)
−0.488952 + 0.872311i \(0.662621\pi\)
\(728\) −7.11529e130 −0.00579540
\(729\) 1.18577e133 0.906084
\(730\) 1.23991e132 0.0888952
\(731\) −2.08670e132 −0.140379
\(732\) −1.90204e133 −1.20075
\(733\) 3.96038e132 0.234640 0.117320 0.993094i \(-0.462570\pi\)
0.117320 + 0.993094i \(0.462570\pi\)
\(734\) −6.80901e130 −0.00378632
\(735\) −2.06437e133 −1.07752
\(736\) 2.72866e132 0.133700
\(737\) 1.38413e133 0.636705
\(738\) −5.68566e130 −0.00245561
\(739\) −1.41364e132 −0.0573288 −0.0286644 0.999589i \(-0.509125\pi\)
−0.0286644 + 0.999589i \(0.509125\pi\)
\(740\) 1.20926e133 0.460515
\(741\) −2.25725e133 −0.807296
\(742\) −2.86835e131 −0.00963496
\(743\) −4.02843e133 −1.27103 −0.635515 0.772089i \(-0.719212\pi\)
−0.635515 + 0.772089i \(0.719212\pi\)
\(744\) −5.71311e132 −0.169329
\(745\) 1.00893e132 0.0280928
\(746\) 3.52387e132 0.0921859
\(747\) 3.03450e132 0.0745898
\(748\) 2.76900e133 0.639586
\(749\) 7.30440e132 0.158555
\(750\) 2.50337e132 0.0510712
\(751\) −2.45927e133 −0.471573 −0.235787 0.971805i \(-0.575767\pi\)
−0.235787 + 0.971805i \(0.575767\pi\)
\(752\) 7.44519e133 1.34198
\(753\) 7.57355e132 0.128331
\(754\) 2.04418e132 0.0325650
\(755\) 2.24095e133 0.335660
\(756\) 8.41129e132 0.118468
\(757\) −1.74934e133 −0.231694 −0.115847 0.993267i \(-0.536958\pi\)
−0.115847 + 0.993267i \(0.536958\pi\)
\(758\) −3.59074e131 −0.00447266
\(759\) 5.93584e133 0.695408
\(760\) −1.73617e133 −0.191320
\(761\) 2.60917e133 0.270468 0.135234 0.990814i \(-0.456821\pi\)
0.135234 + 0.990814i \(0.456821\pi\)
\(762\) −4.54656e132 −0.0443381
\(763\) −6.31549e132 −0.0579450
\(764\) −6.21602e133 −0.536625
\(765\) 8.63362e132 0.0701352
\(766\) −2.21461e132 −0.0169301
\(767\) −8.98396e133 −0.646373
\(768\) −1.49370e134 −1.01150
\(769\) −2.71565e134 −1.73101 −0.865503 0.500905i \(-0.833001\pi\)
−0.865503 + 0.500905i \(0.833001\pi\)
\(770\) −8.92079e131 −0.00535284
\(771\) 1.76381e134 0.996377
\(772\) −5.53189e133 −0.294218
\(773\) 2.21657e134 1.11003 0.555015 0.831841i \(-0.312713\pi\)
0.555015 + 0.831841i \(0.312713\pi\)
\(774\) −1.54245e131 −0.000727373 0
\(775\) 3.78425e133 0.168055
\(776\) 1.88610e133 0.0788851
\(777\) 1.44003e133 0.0567274
\(778\) 6.14531e132 0.0228030
\(779\) 2.87662e134 1.00552
\(780\) −1.47877e134 −0.486971
\(781\) 1.75793e134 0.545417
\(782\) −1.25486e133 −0.0366843
\(783\) −4.83966e134 −1.33319
\(784\) −3.76144e134 −0.976466
\(785\) 5.15783e134 1.26191
\(786\) 4.34003e133 0.100079
\(787\) 7.01625e134 1.52503 0.762517 0.646968i \(-0.223963\pi\)
0.762517 + 0.646968i \(0.223963\pi\)
\(788\) 6.40520e134 1.31239
\(789\) −3.72454e134 −0.719435
\(790\) −2.63148e132 −0.00479226
\(791\) 5.44233e133 0.0934498
\(792\) 4.09921e132 0.00663711
\(793\) −3.38362e134 −0.516629
\(794\) −2.26667e133 −0.0326389
\(795\) −1.19390e135 −1.62142
\(796\) −3.41434e134 −0.437370
\(797\) −2.56830e134 −0.310337 −0.155168 0.987888i \(-0.549592\pi\)
−0.155168 + 0.987888i \(0.549592\pi\)
\(798\) −1.03233e133 −0.0117675
\(799\) −1.03189e135 −1.10970
\(800\) −1.66104e133 −0.0168537
\(801\) −1.98175e133 −0.0189730
\(802\) −8.85412e131 −0.000799903 0
\(803\) 1.48116e135 1.26278
\(804\) 1.04934e135 0.844323
\(805\) −1.47381e134 −0.111927
\(806\) −5.07470e133 −0.0363774
\(807\) 7.10950e133 0.0481082
\(808\) 1.12643e134 0.0719573
\(809\) 2.92460e134 0.176384 0.0881921 0.996103i \(-0.471891\pi\)
0.0881921 + 0.996103i \(0.471891\pi\)
\(810\) −1.03890e134 −0.0591588
\(811\) 3.24175e134 0.174305 0.0871526 0.996195i \(-0.472223\pi\)
0.0871526 + 0.996195i \(0.472223\pi\)
\(812\) −3.40821e134 −0.173050
\(813\) 1.69860e135 0.814481
\(814\) −3.96242e133 −0.0179443
\(815\) −2.35152e135 −1.00582
\(816\) 2.09346e135 0.845810
\(817\) 7.80394e134 0.297844
\(818\) −3.97286e133 −0.0143243
\(819\) −1.32327e133 −0.00450760
\(820\) 1.88454e135 0.606543
\(821\) −2.21028e135 −0.672187 −0.336094 0.941829i \(-0.609106\pi\)
−0.336094 + 0.941829i \(0.609106\pi\)
\(822\) 1.06181e134 0.0305146
\(823\) −9.21561e134 −0.250283 −0.125142 0.992139i \(-0.539939\pi\)
−0.125142 + 0.992139i \(0.539939\pi\)
\(824\) 6.72569e134 0.172632
\(825\) −3.61338e134 −0.0876607
\(826\) −4.10873e133 −0.00942183
\(827\) −7.22312e135 −1.56574 −0.782868 0.622188i \(-0.786244\pi\)
−0.782868 + 0.622188i \(0.786244\pi\)
\(828\) 3.38153e134 0.0692952
\(829\) −1.60908e135 −0.311740 −0.155870 0.987778i \(-0.549818\pi\)
−0.155870 + 0.987778i \(0.549818\pi\)
\(830\) 2.75896e134 0.0505375
\(831\) −5.01053e135 −0.867833
\(832\) −2.67955e135 −0.438861
\(833\) 5.21327e135 0.807454
\(834\) −2.52341e134 −0.0369630
\(835\) 5.83021e135 0.807724
\(836\) −1.03556e136 −1.35702
\(837\) 1.20145e136 1.48927
\(838\) 1.97257e134 0.0231305
\(839\) 1.01984e136 1.13136 0.565682 0.824624i \(-0.308613\pi\)
0.565682 + 0.824624i \(0.308613\pi\)
\(840\) −1.35446e134 −0.0142161
\(841\) 9.54037e135 0.947440
\(842\) −7.04517e134 −0.0662032
\(843\) −1.17194e136 −1.04213
\(844\) 3.46232e135 0.291369
\(845\) 1.05844e136 0.843002
\(846\) −7.62754e133 −0.00574993
\(847\) 6.76991e134 0.0483064
\(848\) −2.17536e136 −1.46935
\(849\) 7.05961e135 0.451412
\(850\) 7.63881e133 0.00462430
\(851\) −6.54636e135 −0.375211
\(852\) 1.33272e136 0.723268
\(853\) −1.53845e135 −0.0790596 −0.0395298 0.999218i \(-0.512586\pi\)
−0.0395298 + 0.999218i \(0.512586\pi\)
\(854\) −1.54747e134 −0.00753061
\(855\) −3.22885e135 −0.148807
\(856\) −3.05168e135 −0.133201
\(857\) −4.43080e136 −1.83178 −0.915891 0.401428i \(-0.868514\pi\)
−0.915891 + 0.401428i \(0.868514\pi\)
\(858\) 4.84556e134 0.0189752
\(859\) 6.46834e135 0.239945 0.119972 0.992777i \(-0.461719\pi\)
0.119972 + 0.992777i \(0.461719\pi\)
\(860\) 5.11254e135 0.179663
\(861\) 2.24418e135 0.0747155
\(862\) 1.99268e135 0.0628565
\(863\) −3.32946e136 −0.995111 −0.497555 0.867432i \(-0.665769\pi\)
−0.497555 + 0.867432i \(0.665769\pi\)
\(864\) −5.27359e135 −0.149354
\(865\) 4.19034e136 1.12461
\(866\) −1.93771e135 −0.0492840
\(867\) 1.41222e136 0.340418
\(868\) 8.46092e135 0.193308
\(869\) −3.14347e135 −0.0680754
\(870\) 3.89129e135 0.0798818
\(871\) 1.86671e136 0.363273
\(872\) 2.63852e135 0.0486793
\(873\) 3.50768e135 0.0613561
\(874\) 4.69298e135 0.0778336
\(875\) −7.42496e135 −0.116767
\(876\) 1.12290e137 1.67455
\(877\) 1.12855e136 0.159602 0.0798012 0.996811i \(-0.474571\pi\)
0.0798012 + 0.996811i \(0.474571\pi\)
\(878\) 2.76286e134 0.00370565
\(879\) 4.11742e136 0.523772
\(880\) −6.76555e136 −0.816317
\(881\) −1.99955e136 −0.228851 −0.114426 0.993432i \(-0.536503\pi\)
−0.114426 + 0.993432i \(0.536503\pi\)
\(882\) 3.85356e134 0.00418382
\(883\) −1.56519e137 −1.61211 −0.806056 0.591840i \(-0.798402\pi\)
−0.806056 + 0.591840i \(0.798402\pi\)
\(884\) 3.73443e136 0.364917
\(885\) −1.71018e137 −1.58555
\(886\) −1.13514e136 −0.0998580
\(887\) 4.03132e136 0.336511 0.168256 0.985743i \(-0.446187\pi\)
0.168256 + 0.985743i \(0.446187\pi\)
\(888\) −6.01623e135 −0.0476564
\(889\) 1.34851e136 0.101373
\(890\) −1.80179e135 −0.0128549
\(891\) −1.24103e137 −0.840367
\(892\) 3.74041e136 0.240410
\(893\) 3.85911e137 2.35447
\(894\) −2.50636e134 −0.00145160
\(895\) −1.61186e137 −0.886253
\(896\) −4.94945e135 −0.0258365
\(897\) 8.00540e136 0.396766
\(898\) 1.43551e136 0.0675549
\(899\) −4.86821e137 −2.17542
\(900\) −2.05847e135 −0.00873512
\(901\) 3.01501e137 1.21503
\(902\) −6.17515e135 −0.0236344
\(903\) 6.08819e135 0.0221313
\(904\) −2.27373e136 −0.0785067
\(905\) 6.36966e137 2.08909
\(906\) −5.56690e135 −0.0173441
\(907\) 1.62643e137 0.481391 0.240695 0.970601i \(-0.422625\pi\)
0.240695 + 0.970601i \(0.422625\pi\)
\(908\) 2.08726e137 0.586928
\(909\) 2.09487e136 0.0559677
\(910\) −1.20311e135 −0.00305407
\(911\) 4.81504e136 0.116144 0.0580718 0.998312i \(-0.481505\pi\)
0.0580718 + 0.998312i \(0.481505\pi\)
\(912\) −7.82924e137 −1.79457
\(913\) 3.29575e137 0.717899
\(914\) 1.62374e136 0.0336139
\(915\) −6.44104e137 −1.26729
\(916\) −6.74184e137 −1.26078
\(917\) −1.28725e137 −0.228817
\(918\) 2.42523e136 0.0409796
\(919\) −5.40959e137 −0.868947 −0.434473 0.900685i \(-0.643065\pi\)
−0.434473 + 0.900685i \(0.643065\pi\)
\(920\) 6.15738e136 0.0940291
\(921\) 7.22680e137 1.04924
\(922\) 2.44132e136 0.0337005
\(923\) 2.37084e137 0.311189
\(924\) −8.07888e136 −0.100833
\(925\) 3.98503e136 0.0472978
\(926\) −6.07828e136 −0.0686072
\(927\) 1.25081e137 0.134272
\(928\) 2.13683e137 0.218167
\(929\) 4.56779e137 0.443583 0.221792 0.975094i \(-0.428809\pi\)
0.221792 + 0.975094i \(0.428809\pi\)
\(930\) −9.66017e136 −0.0892334
\(931\) −1.94969e138 −1.71319
\(932\) 1.81091e138 1.51376
\(933\) 9.98304e137 0.793901
\(934\) −9.68810e135 −0.00733008
\(935\) 9.37691e137 0.675025
\(936\) 5.52842e135 0.00378682
\(937\) −1.76214e138 −1.14855 −0.574276 0.818662i \(-0.694716\pi\)
−0.574276 + 0.818662i \(0.694716\pi\)
\(938\) 8.53723e135 0.00529523
\(939\) −1.90305e137 −0.112331
\(940\) 2.52819e138 1.42025
\(941\) 1.71831e138 0.918722 0.459361 0.888250i \(-0.348078\pi\)
0.459361 + 0.888250i \(0.348078\pi\)
\(942\) −1.28129e137 −0.0652049
\(943\) −1.02020e138 −0.494189
\(944\) −3.11607e138 −1.43684
\(945\) 2.84839e137 0.125032
\(946\) −1.67525e136 −0.00700069
\(947\) −9.56790e137 −0.380665 −0.190332 0.981720i \(-0.560957\pi\)
−0.190332 + 0.981720i \(0.560957\pi\)
\(948\) −2.38313e137 −0.0902736
\(949\) 1.99757e138 0.720482
\(950\) −2.85680e136 −0.00981143
\(951\) −3.35584e138 −1.09751
\(952\) 3.42049e136 0.0106530
\(953\) −6.46995e138 −1.91903 −0.959513 0.281664i \(-0.909114\pi\)
−0.959513 + 0.281664i \(0.909114\pi\)
\(954\) 2.22864e136 0.00629565
\(955\) −2.10499e138 −0.566360
\(956\) 4.34399e138 1.11326
\(957\) 4.64839e138 1.13474
\(958\) 3.59927e137 0.0836985
\(959\) −3.14932e137 −0.0697673
\(960\) −5.10077e138 −1.07652
\(961\) 7.11217e138 1.43009
\(962\) −5.34395e136 −0.0102381
\(963\) −5.67536e137 −0.103603
\(964\) 1.04662e139 1.82058
\(965\) −1.87331e138 −0.310521
\(966\) 3.66119e136 0.00578344
\(967\) −6.69840e138 −1.00842 −0.504209 0.863582i \(-0.668216\pi\)
−0.504209 + 0.863582i \(0.668216\pi\)
\(968\) −2.82838e137 −0.0405820
\(969\) 1.08512e139 1.48395
\(970\) 3.18916e137 0.0415711
\(971\) −4.20821e138 −0.522882 −0.261441 0.965219i \(-0.584198\pi\)
−0.261441 + 0.965219i \(0.584198\pi\)
\(972\) −1.36487e138 −0.161663
\(973\) 7.48442e137 0.0845106
\(974\) −1.78346e137 −0.0191987
\(975\) −4.87321e137 −0.0500150
\(976\) −1.17360e139 −1.14843
\(977\) 1.33674e139 1.24724 0.623619 0.781729i \(-0.285662\pi\)
0.623619 + 0.781729i \(0.285662\pi\)
\(978\) 5.84158e137 0.0519725
\(979\) −2.15236e138 −0.182608
\(980\) −1.27728e139 −1.03341
\(981\) 4.90699e137 0.0378623
\(982\) −4.91477e137 −0.0361675
\(983\) −2.28662e139 −1.60493 −0.802463 0.596702i \(-0.796477\pi\)
−0.802463 + 0.596702i \(0.796477\pi\)
\(984\) −9.37587e137 −0.0627682
\(985\) 2.16905e139 1.38511
\(986\) −9.82687e137 −0.0598603
\(987\) 3.01065e138 0.174950
\(988\) −1.39662e139 −0.774249
\(989\) −2.76769e138 −0.146383
\(990\) 6.93126e136 0.00349764
\(991\) −1.20136e138 −0.0578426 −0.0289213 0.999582i \(-0.509207\pi\)
−0.0289213 + 0.999582i \(0.509207\pi\)
\(992\) −5.30470e138 −0.243707
\(993\) 1.27351e139 0.558295
\(994\) 1.08428e137 0.00453603
\(995\) −1.15623e139 −0.461605
\(996\) 2.49858e139 0.951993
\(997\) 2.75431e139 1.00159 0.500793 0.865567i \(-0.333042\pi\)
0.500793 + 0.865567i \(0.333042\pi\)
\(998\) 1.93248e138 0.0670725
\(999\) 1.26520e139 0.419143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1.94.a.a.1.4 7
3.2 odd 2 9.94.a.b.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1.94.a.a.1.4 7 1.1 even 1 trivial
9.94.a.b.1.4 7 3.2 odd 2