Properties

Label 1.94.a.a.1.1
Level 1
Weight 94
Character 1.1
Self dual yes
Analytic conductor 54.773
Analytic rank 1
Dimension 7
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 94 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(54.7725430605\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Defining polynomial: \(x^{7} - x^{6} - 160477500301516091326739 x^{5} + 877016488484326647371325741724874 x^{4} + 7260529465737129707868752892581169765229378456 x^{3} - 20781038399188480098606854392326662967337072615105929280 x^{2} - 71309214652872234197294752847774640455181142633761719353245451878000 x - 1353216958878139720025204995487184336935523797943751976847532373756765247900000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{88}\cdot 3^{34}\cdot 5^{10}\cdot 7^{6}\cdot 13^{2}\cdot 19\cdot 23\cdot 31^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.01170e11\) of defining polynomial
Character \(\chi\) \(=\) 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.67226e14 q^{2} +1.22637e22 q^{3} +1.80609e28 q^{4} -5.69707e32 q^{5} -2.05080e36 q^{6} +3.48367e39 q^{7} -1.36413e42 q^{8} -8.52575e43 q^{9} +O(q^{10})\) \(q-1.67226e14 q^{2} +1.22637e22 q^{3} +1.80609e28 q^{4} -5.69707e32 q^{5} -2.05080e36 q^{6} +3.48367e39 q^{7} -1.36413e42 q^{8} -8.52575e43 q^{9} +9.52696e46 q^{10} -4.56983e47 q^{11} +2.21493e50 q^{12} -4.65568e49 q^{13} -5.82559e53 q^{14} -6.98669e54 q^{15} +4.92506e55 q^{16} -7.16300e56 q^{17} +1.42572e58 q^{18} -4.92840e58 q^{19} -1.02894e61 q^{20} +4.27226e61 q^{21} +7.64193e61 q^{22} +1.15698e63 q^{23} -1.67292e64 q^{24} +2.23592e65 q^{25} +7.78549e63 q^{26} -3.93556e66 q^{27} +6.29183e67 q^{28} +1.03850e68 q^{29} +1.16835e69 q^{30} -8.93363e67 q^{31} +5.27370e69 q^{32} -5.60428e69 q^{33} +1.19784e71 q^{34} -1.98467e72 q^{35} -1.53983e72 q^{36} +5.91204e72 q^{37} +8.24156e72 q^{38} -5.70957e71 q^{39} +7.77153e74 q^{40} +2.38541e74 q^{41} -7.14432e75 q^{42} -1.84207e75 q^{43} -8.25353e75 q^{44} +4.85718e76 q^{45} -1.93477e77 q^{46} +5.58584e77 q^{47} +6.03993e77 q^{48} +8.20845e78 q^{49} -3.73903e79 q^{50} -8.78446e78 q^{51} -8.40858e77 q^{52} -2.41979e80 q^{53} +6.58128e80 q^{54} +2.60346e80 q^{55} -4.75217e81 q^{56} -6.04403e80 q^{57} -1.73664e82 q^{58} -2.30840e82 q^{59} -1.26186e83 q^{60} +1.46410e83 q^{61} +1.49393e82 q^{62} -2.97009e83 q^{63} -1.36965e84 q^{64} +2.65237e82 q^{65} +9.37180e83 q^{66} +1.40138e84 q^{67} -1.29370e85 q^{68} +1.41889e85 q^{69} +3.31888e86 q^{70} -1.74082e86 q^{71} +1.16302e86 q^{72} -4.65018e86 q^{73} -9.88645e86 q^{74} +2.74205e87 q^{75} -8.90115e86 q^{76} -1.59198e87 q^{77} +9.54786e85 q^{78} -1.89450e88 q^{79} -2.80584e88 q^{80} -2.81731e88 q^{81} -3.98902e88 q^{82} -2.23742e89 q^{83} +7.71609e89 q^{84} +4.08081e89 q^{85} +3.08041e89 q^{86} +1.27358e90 q^{87} +6.23383e89 q^{88} -1.44081e90 q^{89} -8.12245e90 q^{90} -1.62188e89 q^{91} +2.08962e91 q^{92} -1.09559e90 q^{93} -9.34096e91 q^{94} +2.80774e91 q^{95} +6.46750e91 q^{96} -8.44825e91 q^{97} -1.37266e93 q^{98} +3.89612e91 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7q + 43735426713792q^{2} - \)\(36\!\cdots\!84\)\(q^{3} + \)\(37\!\cdots\!44\)\(q^{4} - \)\(24\!\cdots\!50\)\(q^{5} - \)\(34\!\cdots\!56\)\(q^{6} - \)\(92\!\cdots\!08\)\(q^{7} + \)\(62\!\cdots\!60\)\(q^{8} + \)\(36\!\cdots\!11\)\(q^{9} + O(q^{10}) \) \( 7q + 43735426713792q^{2} - \)\(36\!\cdots\!84\)\(q^{3} + \)\(37\!\cdots\!44\)\(q^{4} - \)\(24\!\cdots\!50\)\(q^{5} - \)\(34\!\cdots\!56\)\(q^{6} - \)\(92\!\cdots\!08\)\(q^{7} + \)\(62\!\cdots\!60\)\(q^{8} + \)\(36\!\cdots\!11\)\(q^{9} + \)\(56\!\cdots\!00\)\(q^{10} + \)\(10\!\cdots\!24\)\(q^{11} - \)\(16\!\cdots\!48\)\(q^{12} + \)\(19\!\cdots\!26\)\(q^{13} - \)\(82\!\cdots\!32\)\(q^{14} - \)\(16\!\cdots\!00\)\(q^{15} - \)\(18\!\cdots\!48\)\(q^{16} + \)\(80\!\cdots\!42\)\(q^{17} + \)\(79\!\cdots\!36\)\(q^{18} - \)\(49\!\cdots\!00\)\(q^{19} - \)\(58\!\cdots\!00\)\(q^{20} + \)\(54\!\cdots\!84\)\(q^{21} + \)\(34\!\cdots\!44\)\(q^{22} - \)\(25\!\cdots\!64\)\(q^{23} - \)\(29\!\cdots\!00\)\(q^{24} + \)\(18\!\cdots\!25\)\(q^{25} + \)\(79\!\cdots\!64\)\(q^{26} - \)\(10\!\cdots\!40\)\(q^{27} + \)\(19\!\cdots\!24\)\(q^{28} + \)\(11\!\cdots\!50\)\(q^{29} - \)\(64\!\cdots\!00\)\(q^{30} - \)\(11\!\cdots\!56\)\(q^{31} - \)\(70\!\cdots\!88\)\(q^{32} + \)\(66\!\cdots\!12\)\(q^{33} + \)\(80\!\cdots\!28\)\(q^{34} - \)\(16\!\cdots\!00\)\(q^{35} + \)\(52\!\cdots\!12\)\(q^{36} + \)\(11\!\cdots\!42\)\(q^{37} - \)\(42\!\cdots\!60\)\(q^{38} - \)\(20\!\cdots\!68\)\(q^{39} + \)\(76\!\cdots\!00\)\(q^{40} - \)\(50\!\cdots\!46\)\(q^{41} - \)\(54\!\cdots\!76\)\(q^{42} - \)\(72\!\cdots\!44\)\(q^{43} + \)\(94\!\cdots\!08\)\(q^{44} + \)\(16\!\cdots\!50\)\(q^{45} - \)\(63\!\cdots\!16\)\(q^{46} - \)\(37\!\cdots\!08\)\(q^{47} - \)\(41\!\cdots\!64\)\(q^{48} + \)\(25\!\cdots\!99\)\(q^{49} - \)\(31\!\cdots\!00\)\(q^{50} - \)\(55\!\cdots\!36\)\(q^{51} - \)\(55\!\cdots\!28\)\(q^{52} - \)\(36\!\cdots\!34\)\(q^{53} - \)\(19\!\cdots\!00\)\(q^{54} - \)\(35\!\cdots\!00\)\(q^{55} - \)\(12\!\cdots\!00\)\(q^{56} - \)\(13\!\cdots\!80\)\(q^{57} - \)\(73\!\cdots\!40\)\(q^{58} - \)\(11\!\cdots\!00\)\(q^{59} - \)\(46\!\cdots\!00\)\(q^{60} - \)\(32\!\cdots\!26\)\(q^{61} - \)\(99\!\cdots\!36\)\(q^{62} - \)\(22\!\cdots\!64\)\(q^{63} - \)\(47\!\cdots\!16\)\(q^{64} + \)\(24\!\cdots\!00\)\(q^{65} + \)\(12\!\cdots\!08\)\(q^{66} + \)\(97\!\cdots\!92\)\(q^{67} + \)\(51\!\cdots\!24\)\(q^{68} + \)\(12\!\cdots\!92\)\(q^{69} + \)\(43\!\cdots\!00\)\(q^{70} + \)\(42\!\cdots\!84\)\(q^{71} + \)\(11\!\cdots\!80\)\(q^{72} + \)\(24\!\cdots\!86\)\(q^{73} + \)\(98\!\cdots\!48\)\(q^{74} + \)\(94\!\cdots\!00\)\(q^{75} - \)\(98\!\cdots\!00\)\(q^{76} - \)\(16\!\cdots\!56\)\(q^{77} - \)\(73\!\cdots\!28\)\(q^{78} - \)\(43\!\cdots\!00\)\(q^{79} - \)\(88\!\cdots\!00\)\(q^{80} - \)\(70\!\cdots\!53\)\(q^{81} - \)\(23\!\cdots\!76\)\(q^{82} - \)\(20\!\cdots\!04\)\(q^{83} + \)\(16\!\cdots\!28\)\(q^{84} + \)\(16\!\cdots\!00\)\(q^{85} + \)\(32\!\cdots\!24\)\(q^{86} + \)\(65\!\cdots\!80\)\(q^{87} + \)\(63\!\cdots\!20\)\(q^{88} + \)\(55\!\cdots\!50\)\(q^{89} + \)\(19\!\cdots\!00\)\(q^{90} - \)\(18\!\cdots\!96\)\(q^{91} - \)\(81\!\cdots\!08\)\(q^{92} - \)\(12\!\cdots\!28\)\(q^{93} - \)\(30\!\cdots\!92\)\(q^{94} - \)\(21\!\cdots\!00\)\(q^{95} - \)\(22\!\cdots\!16\)\(q^{96} + \)\(43\!\cdots\!42\)\(q^{97} - \)\(69\!\cdots\!56\)\(q^{98} + \)\(30\!\cdots\!52\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67226e14 −1.68038 −0.840192 0.542290i \(-0.817558\pi\)
−0.840192 + 0.542290i \(0.817558\pi\)
\(3\) 1.22637e22 0.798881 0.399440 0.916759i \(-0.369204\pi\)
0.399440 + 0.916759i \(0.369204\pi\)
\(4\) 1.80609e28 1.82369
\(5\) −5.69707e32 −1.79286 −0.896429 0.443186i \(-0.853848\pi\)
−0.896429 + 0.443186i \(0.853848\pi\)
\(6\) −2.05080e36 −1.34243
\(7\) 3.48367e39 1.75784 0.878918 0.476973i \(-0.158266\pi\)
0.878918 + 0.476973i \(0.158266\pi\)
\(8\) −1.36413e42 −1.38411
\(9\) −8.52575e43 −0.361789
\(10\) 9.52696e46 3.01269
\(11\) −4.56983e47 −0.171846 −0.0859231 0.996302i \(-0.527384\pi\)
−0.0859231 + 0.996302i \(0.527384\pi\)
\(12\) 2.21493e50 1.45691
\(13\) −4.65568e49 −0.00740657 −0.00370328 0.999993i \(-0.501179\pi\)
−0.00370328 + 0.999993i \(0.501179\pi\)
\(14\) −5.82559e53 −2.95384
\(15\) −6.98669e54 −1.43228
\(16\) 4.92506e55 0.502149
\(17\) −7.16300e56 −0.435733 −0.217866 0.975979i \(-0.569910\pi\)
−0.217866 + 0.975979i \(0.569910\pi\)
\(18\) 1.42572e58 0.607945
\(19\) −4.92840e58 −0.170084 −0.0850421 0.996377i \(-0.527102\pi\)
−0.0850421 + 0.996377i \(0.527102\pi\)
\(20\) −1.02894e61 −3.26961
\(21\) 4.27226e61 1.40430
\(22\) 7.64193e61 0.288767
\(23\) 1.15698e63 0.553328 0.276664 0.960967i \(-0.410771\pi\)
0.276664 + 0.960967i \(0.410771\pi\)
\(24\) −1.67292e64 −1.10574
\(25\) 2.23592e65 2.21434
\(26\) 7.78549e63 0.0124459
\(27\) −3.93556e66 −1.08791
\(28\) 6.29183e67 3.20574
\(29\) 1.03850e68 1.03490 0.517452 0.855712i \(-0.326880\pi\)
0.517452 + 0.855712i \(0.326880\pi\)
\(30\) 1.16835e69 2.40678
\(31\) −8.93363e67 −0.0400598 −0.0200299 0.999799i \(-0.506376\pi\)
−0.0200299 + 0.999799i \(0.506376\pi\)
\(32\) 5.27370e69 0.540309
\(33\) −5.60428e69 −0.137285
\(34\) 1.19784e71 0.732198
\(35\) −1.98467e72 −3.15155
\(36\) −1.53983e72 −0.659791
\(37\) 5.91204e72 0.708528 0.354264 0.935145i \(-0.384731\pi\)
0.354264 + 0.935145i \(0.384731\pi\)
\(38\) 8.24156e72 0.285807
\(39\) −5.70957e71 −0.00591696
\(40\) 7.77153e74 2.48152
\(41\) 2.38541e74 0.241609 0.120805 0.992676i \(-0.461453\pi\)
0.120805 + 0.992676i \(0.461453\pi\)
\(42\) −7.14432e75 −2.35976
\(43\) −1.84207e75 −0.203715 −0.101857 0.994799i \(-0.532479\pi\)
−0.101857 + 0.994799i \(0.532479\pi\)
\(44\) −8.25353e75 −0.313394
\(45\) 4.85718e76 0.648637
\(46\) −1.93477e77 −0.929803
\(47\) 5.58584e77 0.987502 0.493751 0.869603i \(-0.335625\pi\)
0.493751 + 0.869603i \(0.335625\pi\)
\(48\) 6.03993e77 0.401157
\(49\) 8.20845e78 2.08999
\(50\) −3.73903e79 −3.72095
\(51\) −8.78446e78 −0.348098
\(52\) −8.40858e77 −0.0135073
\(53\) −2.41979e80 −1.60306 −0.801531 0.597953i \(-0.795981\pi\)
−0.801531 + 0.597953i \(0.795981\pi\)
\(54\) 6.58128e80 1.82810
\(55\) 2.60346e80 0.308096
\(56\) −4.75217e81 −2.43304
\(57\) −6.04403e80 −0.135877
\(58\) −1.73664e82 −1.73904
\(59\) −2.30840e82 −1.04398 −0.521990 0.852951i \(-0.674810\pi\)
−0.521990 + 0.852951i \(0.674810\pi\)
\(60\) −1.26186e83 −2.61203
\(61\) 1.46410e83 1.40518 0.702591 0.711594i \(-0.252027\pi\)
0.702591 + 0.711594i \(0.252027\pi\)
\(62\) 1.49393e82 0.0673159
\(63\) −2.97009e83 −0.635966
\(64\) −1.36965e84 −1.41007
\(65\) 2.65237e82 0.0132789
\(66\) 9.37180e83 0.230691
\(67\) 1.40138e84 0.171426 0.0857131 0.996320i \(-0.472683\pi\)
0.0857131 + 0.996320i \(0.472683\pi\)
\(68\) −1.29370e85 −0.794640
\(69\) 1.41889e85 0.442043
\(70\) 3.31888e86 5.29581
\(71\) −1.74082e86 −1.43628 −0.718142 0.695897i \(-0.755007\pi\)
−0.718142 + 0.695897i \(0.755007\pi\)
\(72\) 1.16302e86 0.500757
\(73\) −4.65018e86 −1.05428 −0.527141 0.849778i \(-0.676736\pi\)
−0.527141 + 0.849778i \(0.676736\pi\)
\(74\) −9.88645e86 −1.19060
\(75\) 2.74205e87 1.76900
\(76\) −8.90115e86 −0.310180
\(77\) −1.59198e87 −0.302077
\(78\) 9.54786e85 0.00994277
\(79\) −1.89450e88 −1.09103 −0.545513 0.838102i \(-0.683665\pi\)
−0.545513 + 0.838102i \(0.683665\pi\)
\(80\) −2.80584e88 −0.900282
\(81\) −2.81731e88 −0.507319
\(82\) −3.98902e88 −0.405996
\(83\) −2.23742e89 −1.29603 −0.648016 0.761627i \(-0.724401\pi\)
−0.648016 + 0.761627i \(0.724401\pi\)
\(84\) 7.71609e89 2.56101
\(85\) 4.08081e89 0.781207
\(86\) 3.08041e89 0.342319
\(87\) 1.27358e90 0.826766
\(88\) 6.23383e89 0.237854
\(89\) −1.44081e90 −0.325066 −0.162533 0.986703i \(-0.551966\pi\)
−0.162533 + 0.986703i \(0.551966\pi\)
\(90\) −8.12245e90 −1.08996
\(91\) −1.62188e89 −0.0130195
\(92\) 2.08962e91 1.00910
\(93\) −1.09559e90 −0.0320030
\(94\) −9.34096e91 −1.65938
\(95\) 2.80774e91 0.304937
\(96\) 6.46750e91 0.431642
\(97\) −8.44825e91 −0.348242 −0.174121 0.984724i \(-0.555708\pi\)
−0.174121 + 0.984724i \(0.555708\pi\)
\(98\) −1.37266e93 −3.51198
\(99\) 3.89612e91 0.0621721
\(100\) 4.03827e93 4.03827
\(101\) 1.31306e93 0.826683 0.413342 0.910576i \(-0.364361\pi\)
0.413342 + 0.910576i \(0.364361\pi\)
\(102\) 1.46899e93 0.584939
\(103\) −1.21301e93 −0.306854 −0.153427 0.988160i \(-0.549031\pi\)
−0.153427 + 0.988160i \(0.549031\pi\)
\(104\) 6.35094e91 0.0102515
\(105\) −2.43393e94 −2.51771
\(106\) 4.04652e94 2.69376
\(107\) −1.56019e94 −0.671168 −0.335584 0.942010i \(-0.608934\pi\)
−0.335584 + 0.942010i \(0.608934\pi\)
\(108\) −7.10799e94 −1.98400
\(109\) 2.90925e94 0.528992 0.264496 0.964387i \(-0.414794\pi\)
0.264496 + 0.964387i \(0.414794\pi\)
\(110\) −4.35366e94 −0.517719
\(111\) 7.25033e94 0.566030
\(112\) 1.71573e95 0.882695
\(113\) −5.02384e95 −1.70957 −0.854787 0.518979i \(-0.826312\pi\)
−0.854787 + 0.518979i \(0.826312\pi\)
\(114\) 1.01072e95 0.228325
\(115\) −6.59141e95 −0.992040
\(116\) 1.87563e96 1.88734
\(117\) 3.96931e93 0.00267962
\(118\) 3.86024e96 1.75429
\(119\) −2.49535e96 −0.765946
\(120\) 9.53075e96 1.98243
\(121\) −6.86280e96 −0.970469
\(122\) −2.44835e97 −2.36124
\(123\) 2.92539e96 0.193017
\(124\) −1.61350e96 −0.0730566
\(125\) −6.98559e97 −2.17715
\(126\) 4.96676e97 1.06867
\(127\) 5.70958e96 0.0850611 0.0425306 0.999095i \(-0.486458\pi\)
0.0425306 + 0.999095i \(0.486458\pi\)
\(128\) 1.76813e98 1.82916
\(129\) −2.25905e97 −0.162744
\(130\) −4.43545e96 −0.0223137
\(131\) −6.34511e96 −0.0223524 −0.0111762 0.999938i \(-0.503558\pi\)
−0.0111762 + 0.999938i \(0.503558\pi\)
\(132\) −1.01219e98 −0.250364
\(133\) −1.71689e98 −0.298980
\(134\) −2.34346e98 −0.288062
\(135\) 2.24212e99 1.95046
\(136\) 9.77125e98 0.603102
\(137\) −1.94391e99 −0.853436 −0.426718 0.904385i \(-0.640330\pi\)
−0.426718 + 0.904385i \(0.640330\pi\)
\(138\) −2.37274e99 −0.742802
\(139\) 8.49504e99 1.90098 0.950489 0.310758i \(-0.100583\pi\)
0.950489 + 0.310758i \(0.100583\pi\)
\(140\) −3.58450e100 −5.74745
\(141\) 6.85028e99 0.788896
\(142\) 2.91110e100 2.41351
\(143\) 2.12756e97 0.00127279
\(144\) −4.19898e99 −0.181672
\(145\) −5.91642e100 −1.85544
\(146\) 7.77630e100 1.77160
\(147\) 1.00666e101 1.66965
\(148\) 1.06777e101 1.29213
\(149\) 1.32597e101 1.17320 0.586599 0.809878i \(-0.300466\pi\)
0.586599 + 0.809878i \(0.300466\pi\)
\(150\) −4.58542e101 −2.97259
\(151\) −3.45701e101 −1.64541 −0.822703 0.568472i \(-0.807535\pi\)
−0.822703 + 0.568472i \(0.807535\pi\)
\(152\) 6.72298e100 0.235415
\(153\) 6.10699e100 0.157643
\(154\) 2.66220e101 0.507606
\(155\) 5.08955e100 0.0718216
\(156\) −1.03120e100 −0.0107907
\(157\) −1.50836e102 −1.17266 −0.586331 0.810072i \(-0.699428\pi\)
−0.586331 + 0.810072i \(0.699428\pi\)
\(158\) 3.16809e102 1.83334
\(159\) −2.96755e102 −1.28066
\(160\) −3.00447e102 −0.968697
\(161\) 4.03055e102 0.972660
\(162\) 4.71127e102 0.852490
\(163\) −2.68240e102 −0.364586 −0.182293 0.983244i \(-0.558352\pi\)
−0.182293 + 0.983244i \(0.558352\pi\)
\(164\) 4.30827e102 0.440620
\(165\) 3.19280e102 0.246132
\(166\) 3.74153e103 2.17783
\(167\) 2.49429e102 0.109807 0.0549036 0.998492i \(-0.482515\pi\)
0.0549036 + 0.998492i \(0.482515\pi\)
\(168\) −5.82791e103 −1.94371
\(169\) −3.95101e103 −0.999945
\(170\) −6.82416e103 −1.31273
\(171\) 4.20183e102 0.0615346
\(172\) −3.32695e103 −0.371512
\(173\) 4.59720e103 0.392057 0.196029 0.980598i \(-0.437195\pi\)
0.196029 + 0.980598i \(0.437195\pi\)
\(174\) −2.12976e104 −1.38928
\(175\) 7.78919e104 3.89245
\(176\) −2.25067e103 −0.0862923
\(177\) −2.83094e104 −0.834016
\(178\) 2.40941e104 0.546236
\(179\) −3.50256e104 −0.611954 −0.305977 0.952039i \(-0.598983\pi\)
−0.305977 + 0.952039i \(0.598983\pi\)
\(180\) 8.77251e104 1.18291
\(181\) −1.14588e105 −1.19422 −0.597111 0.802158i \(-0.703685\pi\)
−0.597111 + 0.802158i \(0.703685\pi\)
\(182\) 2.71221e103 0.0218778
\(183\) 1.79552e105 1.12257
\(184\) −1.57827e105 −0.765867
\(185\) −3.36813e105 −1.27029
\(186\) 1.83211e104 0.0537773
\(187\) 3.27337e104 0.0748790
\(188\) 1.00885e106 1.80089
\(189\) −1.37102e106 −1.91236
\(190\) −4.69527e105 −0.512411
\(191\) 1.60846e106 1.37518 0.687589 0.726100i \(-0.258669\pi\)
0.687589 + 0.726100i \(0.258669\pi\)
\(192\) −1.67970e106 −1.12648
\(193\) −1.70685e106 −0.899043 −0.449521 0.893270i \(-0.648405\pi\)
−0.449521 + 0.893270i \(0.648405\pi\)
\(194\) 1.41276e106 0.585180
\(195\) 3.25278e104 0.0106083
\(196\) 1.48252e107 3.81148
\(197\) 3.10588e106 0.630239 0.315119 0.949052i \(-0.397955\pi\)
0.315119 + 0.949052i \(0.397955\pi\)
\(198\) −6.51531e105 −0.104473
\(199\) −6.17602e106 −0.783504 −0.391752 0.920071i \(-0.628131\pi\)
−0.391752 + 0.920071i \(0.628131\pi\)
\(200\) −3.05008e107 −3.06490
\(201\) 1.71860e106 0.136949
\(202\) −2.19577e107 −1.38915
\(203\) 3.61780e107 1.81919
\(204\) −1.58656e107 −0.634823
\(205\) −1.35898e107 −0.433172
\(206\) 2.02846e107 0.515633
\(207\) −9.86415e106 −0.200188
\(208\) −2.29295e105 −0.00371920
\(209\) 2.25220e106 0.0292283
\(210\) 4.07016e108 4.23072
\(211\) −8.25722e107 −0.688176 −0.344088 0.938937i \(-0.611812\pi\)
−0.344088 + 0.938937i \(0.611812\pi\)
\(212\) −4.37037e108 −2.92349
\(213\) −2.13488e108 −1.14742
\(214\) 2.60904e108 1.12782
\(215\) 1.04944e108 0.365232
\(216\) 5.36861e108 1.50578
\(217\) −3.11218e107 −0.0704186
\(218\) −4.86502e108 −0.888909
\(219\) −5.70283e108 −0.842246
\(220\) 4.70209e108 0.561871
\(221\) 3.33486e106 0.00322728
\(222\) −1.21244e109 −0.951147
\(223\) −2.48798e109 −1.58369 −0.791846 0.610721i \(-0.790880\pi\)
−0.791846 + 0.610721i \(0.790880\pi\)
\(224\) 1.83719e109 0.949774
\(225\) −1.90629e109 −0.801126
\(226\) 8.40115e109 2.87274
\(227\) −4.23182e109 −1.17849 −0.589244 0.807955i \(-0.700574\pi\)
−0.589244 + 0.807955i \(0.700574\pi\)
\(228\) −1.09161e109 −0.247797
\(229\) 5.89882e109 1.09248 0.546242 0.837627i \(-0.316058\pi\)
0.546242 + 0.837627i \(0.316058\pi\)
\(230\) 1.10225e110 1.66701
\(231\) −1.95235e109 −0.241324
\(232\) −1.41665e110 −1.43242
\(233\) 2.13090e110 1.76406 0.882031 0.471192i \(-0.156176\pi\)
0.882031 + 0.471192i \(0.156176\pi\)
\(234\) −6.63771e107 −0.00450278
\(235\) −3.18229e110 −1.77045
\(236\) −4.16918e110 −1.90389
\(237\) −2.32335e110 −0.871600
\(238\) 4.17287e110 1.28708
\(239\) −8.20500e109 −0.208246 −0.104123 0.994564i \(-0.533204\pi\)
−0.104123 + 0.994564i \(0.533204\pi\)
\(240\) −3.44099e110 −0.719218
\(241\) 3.90307e110 0.672378 0.336189 0.941795i \(-0.390862\pi\)
0.336189 + 0.941795i \(0.390862\pi\)
\(242\) 1.14764e111 1.63076
\(243\) 5.81930e110 0.682620
\(244\) 2.64429e111 2.56261
\(245\) −4.67641e111 −3.74705
\(246\) −4.89200e110 −0.324343
\(247\) 2.29451e108 0.00125974
\(248\) 1.21866e110 0.0554472
\(249\) −2.74389e111 −1.03537
\(250\) 1.16817e112 3.65844
\(251\) −1.23935e111 −0.322379 −0.161190 0.986923i \(-0.551533\pi\)
−0.161190 + 0.986923i \(0.551533\pi\)
\(252\) −5.36426e111 −1.15980
\(253\) −5.28721e110 −0.0950873
\(254\) −9.54789e110 −0.142935
\(255\) 5.00457e111 0.624091
\(256\) −1.60033e112 −1.66361
\(257\) −1.72101e112 −1.49243 −0.746213 0.665707i \(-0.768130\pi\)
−0.746213 + 0.665707i \(0.768130\pi\)
\(258\) 3.77771e111 0.273472
\(259\) 2.05956e112 1.24548
\(260\) 4.79043e110 0.0242166
\(261\) −8.85401e111 −0.374418
\(262\) 1.06107e111 0.0375606
\(263\) −6.46068e111 −0.191574 −0.0957869 0.995402i \(-0.530537\pi\)
−0.0957869 + 0.995402i \(0.530537\pi\)
\(264\) 7.64496e111 0.190017
\(265\) 1.37857e113 2.87407
\(266\) 2.87109e112 0.502401
\(267\) −1.76696e112 −0.259689
\(268\) 2.53102e112 0.312628
\(269\) −7.61241e111 −0.0790753 −0.0395377 0.999218i \(-0.512589\pi\)
−0.0395377 + 0.999218i \(0.512589\pi\)
\(270\) −3.74940e113 −3.27753
\(271\) −8.48308e112 −0.624427 −0.312213 0.950012i \(-0.601070\pi\)
−0.312213 + 0.950012i \(0.601070\pi\)
\(272\) −3.52782e112 −0.218802
\(273\) −1.98903e111 −0.0104011
\(274\) 3.25073e113 1.43410
\(275\) −1.02177e113 −0.380526
\(276\) 2.56264e113 0.806149
\(277\) 1.01098e113 0.268802 0.134401 0.990927i \(-0.457089\pi\)
0.134401 + 0.990927i \(0.457089\pi\)
\(278\) −1.42059e114 −3.19437
\(279\) 7.61659e111 0.0144932
\(280\) 2.70735e114 4.36210
\(281\) 2.93864e113 0.401146 0.200573 0.979679i \(-0.435720\pi\)
0.200573 + 0.979679i \(0.435720\pi\)
\(282\) −1.14554e114 −1.32565
\(283\) 1.44060e114 1.41408 0.707042 0.707172i \(-0.250029\pi\)
0.707042 + 0.707172i \(0.250029\pi\)
\(284\) −3.14408e114 −2.61933
\(285\) 3.44332e113 0.243608
\(286\) −3.55783e111 −0.00213877
\(287\) 8.30999e113 0.424710
\(288\) −4.49623e113 −0.195478
\(289\) −2.18931e114 −0.810137
\(290\) 9.89377e114 3.11785
\(291\) −1.03607e114 −0.278204
\(292\) −8.39866e114 −1.92268
\(293\) 2.96400e114 0.578807 0.289403 0.957207i \(-0.406543\pi\)
0.289403 + 0.957207i \(0.406543\pi\)
\(294\) −1.68339e115 −2.80565
\(295\) 1.31511e115 1.87171
\(296\) −8.06478e114 −0.980682
\(297\) 1.79848e114 0.186953
\(298\) −2.21736e115 −1.97142
\(299\) −5.38654e112 −0.00409826
\(300\) 4.95240e115 3.22610
\(301\) −6.41716e114 −0.358097
\(302\) 5.78102e115 2.76491
\(303\) 1.61029e115 0.660422
\(304\) −2.42727e114 −0.0854075
\(305\) −8.34105e115 −2.51929
\(306\) −1.02125e115 −0.264901
\(307\) 1.05946e115 0.236129 0.118065 0.993006i \(-0.462331\pi\)
0.118065 + 0.993006i \(0.462331\pi\)
\(308\) −2.87526e115 −0.550895
\(309\) −1.48759e115 −0.245140
\(310\) −8.51103e114 −0.120688
\(311\) −9.04218e115 −1.10386 −0.551931 0.833890i \(-0.686109\pi\)
−0.551931 + 0.833890i \(0.686109\pi\)
\(312\) 7.78858e113 0.00818973
\(313\) −8.51474e115 −0.771542 −0.385771 0.922595i \(-0.626064\pi\)
−0.385771 + 0.922595i \(0.626064\pi\)
\(314\) 2.52237e116 1.97052
\(315\) 1.69208e116 1.14020
\(316\) −3.42164e116 −1.98969
\(317\) −2.02778e116 −1.01804 −0.509021 0.860754i \(-0.669992\pi\)
−0.509021 + 0.860754i \(0.669992\pi\)
\(318\) 4.96252e116 2.15199
\(319\) −4.74577e115 −0.177844
\(320\) 7.80301e116 2.52806
\(321\) −1.91336e116 −0.536184
\(322\) −6.74012e116 −1.63444
\(323\) 3.53021e115 0.0741112
\(324\) −5.08832e116 −0.925191
\(325\) −1.04097e115 −0.0164007
\(326\) 4.48566e116 0.612643
\(327\) 3.56781e116 0.422601
\(328\) −3.25401e116 −0.334414
\(329\) 1.94592e117 1.73587
\(330\) −5.33918e116 −0.413596
\(331\) −1.27033e116 −0.0854901 −0.0427450 0.999086i \(-0.513610\pi\)
−0.0427450 + 0.999086i \(0.513610\pi\)
\(332\) −4.04098e117 −2.36356
\(333\) −5.04046e116 −0.256338
\(334\) −4.17109e116 −0.184518
\(335\) −7.98374e116 −0.307343
\(336\) 2.10411e117 0.705168
\(337\) −1.73776e117 −0.507225 −0.253612 0.967306i \(-0.581619\pi\)
−0.253612 + 0.967306i \(0.581619\pi\)
\(338\) 6.60710e117 1.68029
\(339\) −6.16107e117 −1.36575
\(340\) 7.37032e117 1.42468
\(341\) 4.08251e115 0.00688413
\(342\) −7.02655e116 −0.103402
\(343\) 1.49134e118 1.91602
\(344\) 2.51282e117 0.281964
\(345\) −8.08349e117 −0.792521
\(346\) −7.68770e117 −0.658806
\(347\) 1.27568e118 0.955921 0.477960 0.878381i \(-0.341376\pi\)
0.477960 + 0.878381i \(0.341376\pi\)
\(348\) 2.30021e118 1.50776
\(349\) −9.04561e117 −0.518866 −0.259433 0.965761i \(-0.583536\pi\)
−0.259433 + 0.965761i \(0.583536\pi\)
\(350\) −1.30255e119 −6.54081
\(351\) 1.83227e116 0.00805766
\(352\) −2.40999e117 −0.0928500
\(353\) 4.00670e118 1.35289 0.676447 0.736492i \(-0.263519\pi\)
0.676447 + 0.736492i \(0.263519\pi\)
\(354\) 4.73407e118 1.40147
\(355\) 9.91756e118 2.57505
\(356\) −2.60224e118 −0.592819
\(357\) −3.06022e118 −0.611900
\(358\) 5.85717e118 1.02832
\(359\) −3.72279e118 −0.574085 −0.287043 0.957918i \(-0.592672\pi\)
−0.287043 + 0.957918i \(0.592672\pi\)
\(360\) −6.62581e118 −0.897786
\(361\) −8.15335e118 −0.971071
\(362\) 1.91621e119 2.00675
\(363\) −8.41631e118 −0.775289
\(364\) −2.92927e117 −0.0237435
\(365\) 2.64924e119 1.89018
\(366\) −3.00257e119 −1.88635
\(367\) −1.79087e118 −0.0991043 −0.0495522 0.998772i \(-0.515779\pi\)
−0.0495522 + 0.998772i \(0.515779\pi\)
\(368\) 5.69821e118 0.277853
\(369\) −2.03374e118 −0.0874117
\(370\) 5.63238e119 2.13458
\(371\) −8.42977e119 −2.81792
\(372\) −1.97874e118 −0.0583635
\(373\) 4.39147e119 1.14327 0.571635 0.820508i \(-0.306309\pi\)
0.571635 + 0.820508i \(0.306309\pi\)
\(374\) −5.47391e118 −0.125825
\(375\) −8.56690e119 −1.73928
\(376\) −7.61980e119 −1.36681
\(377\) −4.83493e117 −0.00766509
\(378\) 2.29270e120 3.21350
\(379\) −6.66278e119 −0.825909 −0.412954 0.910752i \(-0.635503\pi\)
−0.412954 + 0.910752i \(0.635503\pi\)
\(380\) 5.07105e119 0.556110
\(381\) 7.00204e118 0.0679537
\(382\) −2.68976e120 −2.31083
\(383\) 1.79657e120 1.36679 0.683395 0.730049i \(-0.260503\pi\)
0.683395 + 0.730049i \(0.260503\pi\)
\(384\) 2.16838e120 1.46128
\(385\) 9.06960e119 0.541582
\(386\) 2.85429e120 1.51074
\(387\) 1.57050e119 0.0737018
\(388\) −1.52583e120 −0.635085
\(389\) −3.75042e120 −1.38492 −0.692459 0.721458i \(-0.743472\pi\)
−0.692459 + 0.721458i \(0.743472\pi\)
\(390\) −5.43948e118 −0.0178260
\(391\) −8.28747e119 −0.241103
\(392\) −1.11974e121 −2.89277
\(393\) −7.78144e118 −0.0178569
\(394\) −5.19383e120 −1.05904
\(395\) 1.07931e121 1.95606
\(396\) 7.03675e119 0.113383
\(397\) −6.93819e119 −0.0994232 −0.0497116 0.998764i \(-0.515830\pi\)
−0.0497116 + 0.998764i \(0.515830\pi\)
\(398\) 1.03279e121 1.31659
\(399\) −2.10554e120 −0.238849
\(400\) 1.10120e121 1.11193
\(401\) −4.38284e120 −0.394042 −0.197021 0.980399i \(-0.563127\pi\)
−0.197021 + 0.980399i \(0.563127\pi\)
\(402\) −2.87395e120 −0.230127
\(403\) 4.15921e117 0.000296706 0
\(404\) 2.37150e121 1.50761
\(405\) 1.60504e121 0.909551
\(406\) −6.04989e121 −3.05694
\(407\) −2.70170e120 −0.121758
\(408\) 1.19831e121 0.481807
\(409\) 1.19957e121 0.430421 0.215210 0.976568i \(-0.430956\pi\)
0.215210 + 0.976568i \(0.430956\pi\)
\(410\) 2.27257e121 0.727894
\(411\) −2.38395e121 −0.681794
\(412\) −2.19080e121 −0.559606
\(413\) −8.04171e121 −1.83515
\(414\) 1.64954e121 0.336393
\(415\) 1.27467e122 2.32360
\(416\) −2.45527e119 −0.00400183
\(417\) 1.04180e122 1.51866
\(418\) −3.76625e120 −0.0491148
\(419\) −1.55294e122 −1.81219 −0.906095 0.423074i \(-0.860951\pi\)
−0.906095 + 0.423074i \(0.860951\pi\)
\(420\) −4.39591e122 −4.59152
\(421\) 1.20749e122 1.12919 0.564595 0.825368i \(-0.309032\pi\)
0.564595 + 0.825368i \(0.309032\pi\)
\(422\) 1.38082e122 1.15640
\(423\) −4.76234e121 −0.357268
\(424\) 3.30091e122 2.21882
\(425\) −1.60159e122 −0.964861
\(426\) 3.57007e122 1.92810
\(427\) 5.10043e122 2.47008
\(428\) −2.81785e122 −1.22400
\(429\) 2.60917e119 0.00101681
\(430\) −1.75493e122 −0.613729
\(431\) 1.44577e122 0.453842 0.226921 0.973913i \(-0.427134\pi\)
0.226921 + 0.973913i \(0.427134\pi\)
\(432\) −1.93829e122 −0.546291
\(433\) −6.73888e122 −1.70569 −0.852846 0.522163i \(-0.825125\pi\)
−0.852846 + 0.522163i \(0.825125\pi\)
\(434\) 5.20437e121 0.118330
\(435\) −7.25569e122 −1.48227
\(436\) 5.25438e122 0.964716
\(437\) −5.70208e121 −0.0941124
\(438\) 9.53659e122 1.41530
\(439\) −1.23553e123 −1.64912 −0.824560 0.565775i \(-0.808577\pi\)
−0.824560 + 0.565775i \(0.808577\pi\)
\(440\) −3.55145e122 −0.426439
\(441\) −6.99832e122 −0.756135
\(442\) −5.57674e120 −0.00542307
\(443\) 2.19056e122 0.191771 0.0958854 0.995392i \(-0.469432\pi\)
0.0958854 + 0.995392i \(0.469432\pi\)
\(444\) 1.30948e123 1.03226
\(445\) 8.20840e122 0.582798
\(446\) 4.16054e123 2.66121
\(447\) 1.62612e123 0.937245
\(448\) −4.77142e123 −2.47868
\(449\) 7.18526e122 0.336502 0.168251 0.985744i \(-0.446188\pi\)
0.168251 + 0.985744i \(0.446188\pi\)
\(450\) 3.18780e123 1.34620
\(451\) −1.09009e122 −0.0415197
\(452\) −9.07351e123 −3.11773
\(453\) −4.23957e123 −1.31448
\(454\) 7.07670e123 1.98031
\(455\) 9.23999e121 0.0233422
\(456\) 8.24483e122 0.188069
\(457\) 4.72549e123 0.973518 0.486759 0.873536i \(-0.338179\pi\)
0.486759 + 0.873536i \(0.338179\pi\)
\(458\) −9.86434e123 −1.83579
\(459\) 2.81904e123 0.474037
\(460\) −1.19047e124 −1.80917
\(461\) 1.23678e124 1.69902 0.849510 0.527573i \(-0.176898\pi\)
0.849510 + 0.527573i \(0.176898\pi\)
\(462\) 3.26483e123 0.405516
\(463\) 7.69925e123 0.864833 0.432417 0.901674i \(-0.357661\pi\)
0.432417 + 0.901674i \(0.357661\pi\)
\(464\) 5.11468e123 0.519676
\(465\) 6.24165e122 0.0573769
\(466\) −3.56342e124 −2.96430
\(467\) −1.64477e124 −1.23843 −0.619215 0.785222i \(-0.712549\pi\)
−0.619215 + 0.785222i \(0.712549\pi\)
\(468\) 7.16895e121 0.00488678
\(469\) 4.88194e123 0.301339
\(470\) 5.32161e124 2.97504
\(471\) −1.84981e124 −0.936817
\(472\) 3.14895e124 1.44498
\(473\) 8.41793e122 0.0350076
\(474\) 3.88524e124 1.46462
\(475\) −1.10195e124 −0.376625
\(476\) −4.50684e124 −1.39685
\(477\) 2.06306e124 0.579971
\(478\) 1.37209e124 0.349933
\(479\) −2.79704e124 −0.647287 −0.323643 0.946179i \(-0.604908\pi\)
−0.323643 + 0.946179i \(0.604908\pi\)
\(480\) −3.68458e124 −0.773873
\(481\) −2.75245e122 −0.00524776
\(482\) −6.52693e124 −1.12985
\(483\) 4.94293e124 0.777040
\(484\) −1.23949e125 −1.76983
\(485\) 4.81302e124 0.624349
\(486\) −9.73137e124 −1.14706
\(487\) 2.15017e124 0.230343 0.115172 0.993346i \(-0.463258\pi\)
0.115172 + 0.993346i \(0.463258\pi\)
\(488\) −1.99721e125 −1.94493
\(489\) −3.28960e124 −0.291260
\(490\) 7.82016e125 6.29648
\(491\) −2.58184e123 −0.0189077 −0.00945387 0.999955i \(-0.503009\pi\)
−0.00945387 + 0.999955i \(0.503009\pi\)
\(492\) 5.28352e124 0.352003
\(493\) −7.43879e124 −0.450942
\(494\) −3.83700e122 −0.00211685
\(495\) −2.21965e124 −0.111466
\(496\) −4.39986e123 −0.0201160
\(497\) −6.06444e125 −2.52475
\(498\) 4.58849e125 1.73983
\(499\) 4.24177e125 1.46511 0.732557 0.680706i \(-0.238327\pi\)
0.732557 + 0.680706i \(0.238327\pi\)
\(500\) −1.26166e126 −3.97043
\(501\) 3.05891e124 0.0877228
\(502\) 2.07252e125 0.541721
\(503\) 6.20313e125 1.47809 0.739043 0.673658i \(-0.235278\pi\)
0.739043 + 0.673658i \(0.235278\pi\)
\(504\) 4.05158e125 0.880248
\(505\) −7.48057e125 −1.48213
\(506\) 8.84158e124 0.159783
\(507\) −4.84538e125 −0.798837
\(508\) 1.03120e125 0.155125
\(509\) 6.21343e125 0.853011 0.426505 0.904485i \(-0.359745\pi\)
0.426505 + 0.904485i \(0.359745\pi\)
\(510\) −8.36892e125 −1.04871
\(511\) −1.61997e126 −1.85325
\(512\) 9.25092e125 0.966344
\(513\) 1.93961e125 0.185036
\(514\) 2.87797e126 2.50785
\(515\) 6.91058e125 0.550146
\(516\) −4.08006e125 −0.296794
\(517\) −2.55263e125 −0.169698
\(518\) −3.44412e126 −2.09288
\(519\) 5.63785e125 0.313207
\(520\) −3.61817e124 −0.0183795
\(521\) 1.08310e126 0.503170 0.251585 0.967835i \(-0.419048\pi\)
0.251585 + 0.967835i \(0.419048\pi\)
\(522\) 1.48062e126 0.629165
\(523\) −2.12144e126 −0.824711 −0.412356 0.911023i \(-0.635294\pi\)
−0.412356 + 0.911023i \(0.635294\pi\)
\(524\) −1.14599e125 −0.0407638
\(525\) 9.55241e126 3.10961
\(526\) 1.08039e126 0.321917
\(527\) 6.39916e124 0.0174554
\(528\) −2.76014e125 −0.0689373
\(529\) −3.03348e126 −0.693828
\(530\) −2.30533e127 −4.82953
\(531\) 1.96808e126 0.377701
\(532\) −3.10087e126 −0.545246
\(533\) −1.11057e124 −0.00178950
\(534\) 2.95482e126 0.436377
\(535\) 8.88850e126 1.20331
\(536\) −1.91166e126 −0.237273
\(537\) −4.29542e126 −0.488879
\(538\) 1.27299e126 0.132877
\(539\) −3.75112e126 −0.359156
\(540\) 4.04947e127 3.55704
\(541\) 5.54574e126 0.446978 0.223489 0.974706i \(-0.428255\pi\)
0.223489 + 0.974706i \(0.428255\pi\)
\(542\) 1.41859e127 1.04928
\(543\) −1.40527e127 −0.954042
\(544\) −3.77755e126 −0.235430
\(545\) −1.65742e127 −0.948408
\(546\) 3.32616e125 0.0174777
\(547\) 2.32636e127 1.12271 0.561354 0.827576i \(-0.310281\pi\)
0.561354 + 0.827576i \(0.310281\pi\)
\(548\) −3.51089e127 −1.55640
\(549\) −1.24825e127 −0.508380
\(550\) 1.70867e127 0.639430
\(551\) −5.11816e126 −0.176021
\(552\) −1.93554e127 −0.611837
\(553\) −6.59982e127 −1.91784
\(554\) −1.69061e127 −0.451690
\(555\) −4.13056e127 −1.01481
\(556\) 1.53428e128 3.46679
\(557\) 5.86328e127 1.21864 0.609318 0.792926i \(-0.291443\pi\)
0.609318 + 0.792926i \(0.291443\pi\)
\(558\) −1.27369e126 −0.0243542
\(559\) 8.57607e124 0.00150883
\(560\) −9.77462e127 −1.58255
\(561\) 4.01435e126 0.0598194
\(562\) −4.91416e127 −0.674079
\(563\) −6.83447e127 −0.863107 −0.431554 0.902087i \(-0.642034\pi\)
−0.431554 + 0.902087i \(0.642034\pi\)
\(564\) 1.23722e128 1.43870
\(565\) 2.86211e128 3.06502
\(566\) −2.40906e128 −2.37620
\(567\) −9.81458e127 −0.891784
\(568\) 2.37470e128 1.98797
\(569\) −1.82425e128 −1.40722 −0.703611 0.710585i \(-0.748430\pi\)
−0.703611 + 0.710585i \(0.748430\pi\)
\(570\) −5.75813e127 −0.409355
\(571\) 8.22711e127 0.539099 0.269549 0.962987i \(-0.413125\pi\)
0.269549 + 0.962987i \(0.413125\pi\)
\(572\) 3.84258e125 0.00232117
\(573\) 1.97256e128 1.09860
\(574\) −1.38964e128 −0.713675
\(575\) 2.58692e128 1.22526
\(576\) 1.16773e128 0.510150
\(577\) −1.15417e128 −0.465150 −0.232575 0.972578i \(-0.574715\pi\)
−0.232575 + 0.972578i \(0.574715\pi\)
\(578\) 3.66110e128 1.36134
\(579\) −2.09322e128 −0.718228
\(580\) −1.06856e129 −3.38374
\(581\) −7.79442e128 −2.27821
\(582\) 1.73257e128 0.467489
\(583\) 1.10580e128 0.275480
\(584\) 6.34344e128 1.45924
\(585\) −2.26134e126 −0.00480418
\(586\) −4.95657e128 −0.972617
\(587\) 4.28859e128 0.777397 0.388699 0.921365i \(-0.372925\pi\)
0.388699 + 0.921365i \(0.372925\pi\)
\(588\) 1.81812e129 3.04492
\(589\) 4.40285e126 0.00681354
\(590\) −2.19920e129 −3.14519
\(591\) 3.80895e128 0.503486
\(592\) 2.91172e128 0.355787
\(593\) 8.20747e128 0.927184 0.463592 0.886049i \(-0.346560\pi\)
0.463592 + 0.886049i \(0.346560\pi\)
\(594\) −3.00753e128 −0.314152
\(595\) 1.42162e129 1.37323
\(596\) 2.39482e129 2.13955
\(597\) −7.57407e128 −0.625926
\(598\) 9.00768e126 0.00688665
\(599\) 4.54499e128 0.321504 0.160752 0.986995i \(-0.448608\pi\)
0.160752 + 0.986995i \(0.448608\pi\)
\(600\) −3.74051e129 −2.44849
\(601\) −2.06533e129 −1.25120 −0.625599 0.780145i \(-0.715145\pi\)
−0.625599 + 0.780145i \(0.715145\pi\)
\(602\) 1.07311e129 0.601740
\(603\) −1.19478e128 −0.0620201
\(604\) −6.24369e129 −3.00071
\(605\) 3.90978e129 1.73991
\(606\) −2.69282e129 −1.10976
\(607\) −3.80973e129 −1.45419 −0.727094 0.686538i \(-0.759130\pi\)
−0.727094 + 0.686538i \(0.759130\pi\)
\(608\) −2.59909e128 −0.0918979
\(609\) 4.43675e129 1.45332
\(610\) 1.39484e130 4.23338
\(611\) −2.60058e127 −0.00731400
\(612\) 1.10298e129 0.287492
\(613\) −4.21082e129 −1.01731 −0.508656 0.860970i \(-0.669857\pi\)
−0.508656 + 0.860970i \(0.669857\pi\)
\(614\) −1.77169e129 −0.396787
\(615\) −1.66661e129 −0.346053
\(616\) 2.17166e129 0.418108
\(617\) −4.88112e129 −0.871484 −0.435742 0.900072i \(-0.643514\pi\)
−0.435742 + 0.900072i \(0.643514\pi\)
\(618\) 2.48763e129 0.411929
\(619\) −7.62026e129 −1.17045 −0.585227 0.810869i \(-0.698995\pi\)
−0.585227 + 0.810869i \(0.698995\pi\)
\(620\) 9.19219e128 0.130980
\(621\) −4.55338e129 −0.601970
\(622\) 1.51208e130 1.85491
\(623\) −5.01931e129 −0.571413
\(624\) −2.81200e127 −0.00297120
\(625\) 1.72204e130 1.68897
\(626\) 1.42388e130 1.29649
\(627\) 2.76202e128 0.0233499
\(628\) −2.72425e130 −2.13857
\(629\) −4.23479e129 −0.308729
\(630\) −2.82959e130 −1.91597
\(631\) −4.44127e129 −0.279346 −0.139673 0.990198i \(-0.544605\pi\)
−0.139673 + 0.990198i \(0.544605\pi\)
\(632\) 2.58434e130 1.51010
\(633\) −1.01264e130 −0.549771
\(634\) 3.39097e130 1.71070
\(635\) −3.25279e129 −0.152503
\(636\) −5.35968e130 −2.33552
\(637\) −3.82159e128 −0.0154796
\(638\) 7.93615e129 0.298847
\(639\) 1.48418e130 0.519632
\(640\) −1.00732e131 −3.27942
\(641\) 5.07224e130 1.53568 0.767841 0.640640i \(-0.221331\pi\)
0.767841 + 0.640640i \(0.221331\pi\)
\(642\) 3.19964e130 0.900994
\(643\) 5.10656e130 1.33757 0.668787 0.743454i \(-0.266814\pi\)
0.668787 + 0.743454i \(0.266814\pi\)
\(644\) 7.27955e130 1.77383
\(645\) 1.28700e130 0.291777
\(646\) −5.90343e129 −0.124535
\(647\) −1.41954e130 −0.278675 −0.139337 0.990245i \(-0.544497\pi\)
−0.139337 + 0.990245i \(0.544497\pi\)
\(648\) 3.84317e130 0.702186
\(649\) 1.05490e130 0.179404
\(650\) 1.74077e129 0.0275594
\(651\) −3.81668e129 −0.0562561
\(652\) −4.84466e130 −0.664890
\(653\) −1.15140e131 −1.47150 −0.735752 0.677251i \(-0.763171\pi\)
−0.735752 + 0.677251i \(0.763171\pi\)
\(654\) −5.96629e130 −0.710132
\(655\) 3.61485e129 0.0400747
\(656\) 1.17483e130 0.121324
\(657\) 3.96463e130 0.381428
\(658\) −3.25408e131 −2.91692
\(659\) 1.96031e131 1.63740 0.818698 0.574224i \(-0.194696\pi\)
0.818698 + 0.574224i \(0.194696\pi\)
\(660\) 5.76649e130 0.448868
\(661\) −2.17070e131 −1.57482 −0.787410 0.616429i \(-0.788579\pi\)
−0.787410 + 0.616429i \(0.788579\pi\)
\(662\) 2.12432e130 0.143656
\(663\) 4.08976e128 0.00257821
\(664\) 3.05212e131 1.79385
\(665\) 9.78126e130 0.536029
\(666\) 8.42894e130 0.430746
\(667\) 1.20153e131 0.572642
\(668\) 4.50492e130 0.200254
\(669\) −3.05118e131 −1.26518
\(670\) 1.33509e131 0.516454
\(671\) −6.69067e130 −0.241475
\(672\) 2.25306e131 0.758756
\(673\) 2.57783e131 0.810127 0.405063 0.914289i \(-0.367249\pi\)
0.405063 + 0.914289i \(0.367249\pi\)
\(674\) 2.90599e131 0.852332
\(675\) −8.79959e131 −2.40900
\(676\) −7.13589e131 −1.82359
\(677\) 3.80729e131 0.908328 0.454164 0.890918i \(-0.349938\pi\)
0.454164 + 0.890918i \(0.349938\pi\)
\(678\) 1.03029e132 2.29498
\(679\) −2.94309e131 −0.612152
\(680\) −5.56675e131 −1.08128
\(681\) −5.18977e131 −0.941471
\(682\) −6.82701e129 −0.0115680
\(683\) 6.39876e131 1.01282 0.506411 0.862292i \(-0.330972\pi\)
0.506411 + 0.862292i \(0.330972\pi\)
\(684\) 7.58890e130 0.112220
\(685\) 1.10746e132 1.53009
\(686\) −2.49390e132 −3.21964
\(687\) 7.23412e131 0.872765
\(688\) −9.07229e130 −0.102295
\(689\) 1.12658e130 0.0118732
\(690\) 1.35177e132 1.33174
\(691\) 1.56983e131 0.144585 0.0722925 0.997383i \(-0.476968\pi\)
0.0722925 + 0.997383i \(0.476968\pi\)
\(692\) 8.30297e131 0.714990
\(693\) 1.35728e131 0.109288
\(694\) −2.13327e132 −1.60631
\(695\) −4.83968e132 −3.40819
\(696\) −1.73733e132 −1.14434
\(697\) −1.70867e131 −0.105277
\(698\) 1.51266e132 0.871894
\(699\) 2.61327e132 1.40927
\(700\) 1.40680e133 7.09862
\(701\) −1.73944e132 −0.821335 −0.410668 0.911785i \(-0.634704\pi\)
−0.410668 + 0.911785i \(0.634704\pi\)
\(702\) −3.06403e130 −0.0135400
\(703\) −2.91369e131 −0.120509
\(704\) 6.25908e131 0.242316
\(705\) −3.90265e132 −1.41438
\(706\) −6.70024e132 −2.27338
\(707\) 4.57425e132 1.45317
\(708\) −5.11295e132 −1.52098
\(709\) 5.69886e132 1.58759 0.793794 0.608186i \(-0.208103\pi\)
0.793794 + 0.608186i \(0.208103\pi\)
\(710\) −1.65847e133 −4.32708
\(711\) 1.61520e132 0.394722
\(712\) 1.96545e132 0.449928
\(713\) −1.03361e131 −0.0221662
\(714\) 5.11747e132 1.02823
\(715\) −1.21209e130 −0.00228193
\(716\) −6.32594e132 −1.11601
\(717\) −1.00623e132 −0.166363
\(718\) 6.22546e132 0.964683
\(719\) −5.60725e131 −0.0814435 −0.0407218 0.999171i \(-0.512966\pi\)
−0.0407218 + 0.999171i \(0.512966\pi\)
\(720\) 2.39219e132 0.325712
\(721\) −4.22572e132 −0.539399
\(722\) 1.36345e133 1.63177
\(723\) 4.78659e132 0.537150
\(724\) −2.06956e133 −2.17789
\(725\) 2.32200e133 2.29163
\(726\) 1.40742e133 1.30278
\(727\) −3.95282e132 −0.343207 −0.171604 0.985166i \(-0.554895\pi\)
−0.171604 + 0.985166i \(0.554895\pi\)
\(728\) 2.21246e131 0.0180205
\(729\) 1.37757e133 1.05265
\(730\) −4.43021e133 −3.17623
\(731\) 1.31947e132 0.0887652
\(732\) 3.24287e133 2.04722
\(733\) −1.21179e133 −0.717950 −0.358975 0.933347i \(-0.616874\pi\)
−0.358975 + 0.933347i \(0.616874\pi\)
\(734\) 2.99480e132 0.166533
\(735\) −5.73499e133 −2.99345
\(736\) 6.10159e132 0.298968
\(737\) −6.40405e131 −0.0294589
\(738\) 3.40094e132 0.146885
\(739\) 2.87595e133 1.16631 0.583157 0.812360i \(-0.301817\pi\)
0.583157 + 0.812360i \(0.301817\pi\)
\(740\) −6.08315e133 −2.31661
\(741\) 2.81390e130 0.00100638
\(742\) 1.40967e134 4.73519
\(743\) −9.00234e132 −0.284037 −0.142019 0.989864i \(-0.545359\pi\)
−0.142019 + 0.989864i \(0.545359\pi\)
\(744\) 1.49453e132 0.0442957
\(745\) −7.55412e133 −2.10338
\(746\) −7.34366e133 −1.92113
\(747\) 1.90756e133 0.468890
\(748\) 5.91200e132 0.136556
\(749\) −5.43518e133 −1.17980
\(750\) 1.43261e134 2.92266
\(751\) −7.48940e133 −1.43612 −0.718059 0.695982i \(-0.754969\pi\)
−0.718059 + 0.695982i \(0.754969\pi\)
\(752\) 2.75106e133 0.495873
\(753\) −1.51990e133 −0.257543
\(754\) 8.08525e131 0.0128803
\(755\) 1.96948e134 2.94998
\(756\) −2.47619e134 −3.48755
\(757\) 1.10318e134 1.46113 0.730565 0.682843i \(-0.239257\pi\)
0.730565 + 0.682843i \(0.239257\pi\)
\(758\) 1.11419e134 1.38784
\(759\) −6.48406e132 −0.0759635
\(760\) −3.83012e133 −0.422066
\(761\) −1.06465e134 −1.10362 −0.551811 0.833969i \(-0.686063\pi\)
−0.551811 + 0.833969i \(0.686063\pi\)
\(762\) −1.17092e133 −0.114188
\(763\) 1.01349e134 0.929881
\(764\) 2.90503e134 2.50790
\(765\) −3.47919e133 −0.282632
\(766\) −3.00433e134 −2.29673
\(767\) 1.07472e132 0.00773231
\(768\) −1.96259e134 −1.32903
\(769\) 2.64666e134 1.68703 0.843515 0.537105i \(-0.180482\pi\)
0.843515 + 0.537105i \(0.180482\pi\)
\(770\) −1.51667e134 −0.910065
\(771\) −2.11059e134 −1.19227
\(772\) −3.08273e134 −1.63957
\(773\) −1.28102e134 −0.641518 −0.320759 0.947161i \(-0.603938\pi\)
−0.320759 + 0.947161i \(0.603938\pi\)
\(774\) −2.62628e133 −0.123847
\(775\) −1.99748e133 −0.0887062
\(776\) 1.15245e134 0.482005
\(777\) 2.52578e134 0.994987
\(778\) 6.27167e134 2.32719
\(779\) −1.17563e133 −0.0410939
\(780\) 5.87482e132 0.0193462
\(781\) 7.95523e133 0.246820
\(782\) 1.38588e134 0.405146
\(783\) −4.08709e134 −1.12588
\(784\) 4.04271e134 1.04948
\(785\) 8.59326e134 2.10242
\(786\) 1.30126e133 0.0300064
\(787\) 2.01831e133 0.0438696 0.0219348 0.999759i \(-0.493017\pi\)
0.0219348 + 0.999759i \(0.493017\pi\)
\(788\) 5.60951e134 1.14936
\(789\) −7.92317e133 −0.153045
\(790\) −1.80488e135 −3.28692
\(791\) −1.75014e135 −3.00515
\(792\) −5.31481e133 −0.0860531
\(793\) −6.81636e132 −0.0104076
\(794\) 1.16024e134 0.167069
\(795\) 1.69064e135 2.29604
\(796\) −1.11545e135 −1.42887
\(797\) 1.38083e134 0.166850 0.0834252 0.996514i \(-0.473414\pi\)
0.0834252 + 0.996514i \(0.473414\pi\)
\(798\) 3.52101e134 0.401359
\(799\) −4.00113e134 −0.430287
\(800\) 1.17916e135 1.19643
\(801\) 1.22840e134 0.117606
\(802\) 7.32924e134 0.662141
\(803\) 2.12505e134 0.181174
\(804\) 3.10396e134 0.249752
\(805\) −2.29623e135 −1.74384
\(806\) −6.95527e131 −0.000498579 0
\(807\) −9.33560e133 −0.0631717
\(808\) −1.79118e135 −1.14422
\(809\) 6.20202e134 0.374047 0.187024 0.982355i \(-0.440116\pi\)
0.187024 + 0.982355i \(0.440116\pi\)
\(810\) −2.68404e135 −1.52839
\(811\) 1.84479e135 0.991922 0.495961 0.868345i \(-0.334816\pi\)
0.495961 + 0.868345i \(0.334816\pi\)
\(812\) 6.53408e135 3.31764
\(813\) −1.04034e135 −0.498843
\(814\) 4.51794e134 0.204600
\(815\) 1.52818e135 0.653650
\(816\) −4.32640e134 −0.174797
\(817\) 9.07846e133 0.0346487
\(818\) −2.00600e135 −0.723272
\(819\) 1.38278e133 0.00471033
\(820\) −2.45445e135 −0.789970
\(821\) −2.15187e135 −0.654425 −0.327213 0.944951i \(-0.606109\pi\)
−0.327213 + 0.944951i \(0.606109\pi\)
\(822\) 3.98658e135 1.14567
\(823\) −5.23448e135 −1.42161 −0.710806 0.703388i \(-0.751670\pi\)
−0.710806 + 0.703388i \(0.751670\pi\)
\(824\) 1.65470e135 0.424720
\(825\) −1.25307e135 −0.303995
\(826\) 1.34478e136 3.08375
\(827\) −4.54736e135 −0.985719 −0.492860 0.870109i \(-0.664048\pi\)
−0.492860 + 0.870109i \(0.664048\pi\)
\(828\) −1.78156e135 −0.365081
\(829\) 9.79485e135 1.89763 0.948816 0.315828i \(-0.102282\pi\)
0.948816 + 0.315828i \(0.102282\pi\)
\(830\) −2.13158e136 −3.90454
\(831\) 1.23983e135 0.214740
\(832\) 6.37666e133 0.0104438
\(833\) −5.87971e135 −0.910675
\(834\) −1.74216e136 −2.55192
\(835\) −1.42101e135 −0.196869
\(836\) 4.06767e134 0.0533033
\(837\) 3.51589e134 0.0435814
\(838\) 2.59692e136 3.04517
\(839\) 7.42245e135 0.823409 0.411705 0.911317i \(-0.364934\pi\)
0.411705 + 0.911317i \(0.364934\pi\)
\(840\) 3.32020e136 3.48479
\(841\) 7.15226e134 0.0710280
\(842\) −2.01924e136 −1.89747
\(843\) 3.60385e135 0.320468
\(844\) −1.49133e136 −1.25502
\(845\) 2.25092e136 1.79276
\(846\) 7.96386e135 0.600346
\(847\) −2.39077e136 −1.70592
\(848\) −1.19176e136 −0.804976
\(849\) 1.76671e136 1.12968
\(850\) 2.67826e136 1.62134
\(851\) 6.84013e135 0.392049
\(852\) −3.85579e136 −2.09253
\(853\) 2.84936e135 0.146426 0.0732128 0.997316i \(-0.476675\pi\)
0.0732128 + 0.997316i \(0.476675\pi\)
\(854\) −8.52923e136 −4.15068
\(855\) −2.39381e135 −0.110323
\(856\) 2.12830e136 0.928971
\(857\) 1.21549e136 0.502507 0.251254 0.967921i \(-0.419157\pi\)
0.251254 + 0.967921i \(0.419157\pi\)
\(858\) −4.36321e133 −0.00170863
\(859\) −7.04217e135 −0.261231 −0.130615 0.991433i \(-0.541695\pi\)
−0.130615 + 0.991433i \(0.541695\pi\)
\(860\) 1.89538e136 0.666069
\(861\) 1.01911e136 0.339292
\(862\) −2.41769e136 −0.762629
\(863\) 2.08063e136 0.621859 0.310930 0.950433i \(-0.399360\pi\)
0.310930 + 0.950433i \(0.399360\pi\)
\(864\) −2.07550e136 −0.587806
\(865\) −2.61906e136 −0.702903
\(866\) 1.12691e137 2.86621
\(867\) −2.68490e136 −0.647203
\(868\) −5.62089e135 −0.128422
\(869\) 8.65754e135 0.187489
\(870\) 1.21334e137 2.49079
\(871\) −6.52436e133 −0.00126968
\(872\) −3.96859e136 −0.732183
\(873\) 7.20277e135 0.125990
\(874\) 9.53535e135 0.158145
\(875\) −2.43355e137 −3.82707
\(876\) −1.02998e137 −1.53599
\(877\) 3.05763e136 0.432418 0.216209 0.976347i \(-0.430631\pi\)
0.216209 + 0.976347i \(0.430631\pi\)
\(878\) 2.06612e137 2.77115
\(879\) 3.63495e136 0.462397
\(880\) 1.28222e136 0.154710
\(881\) −7.50481e136 −0.858935 −0.429467 0.903082i \(-0.641299\pi\)
−0.429467 + 0.903082i \(0.641299\pi\)
\(882\) 1.17030e137 1.27060
\(883\) −5.64375e136 −0.581293 −0.290647 0.956830i \(-0.593870\pi\)
−0.290647 + 0.956830i \(0.593870\pi\)
\(884\) 6.02307e134 0.00588555
\(885\) 1.61281e137 1.49527
\(886\) −3.66318e136 −0.322248
\(887\) 1.61696e136 0.134974 0.0674872 0.997720i \(-0.478502\pi\)
0.0674872 + 0.997720i \(0.478502\pi\)
\(888\) −9.89038e136 −0.783448
\(889\) 1.98903e136 0.149523
\(890\) −1.37266e137 −0.979324
\(891\) 1.28746e136 0.0871808
\(892\) −4.49352e137 −2.88816
\(893\) −2.75293e136 −0.167958
\(894\) −2.71929e137 −1.57493
\(895\) 1.99543e137 1.09715
\(896\) 6.15959e137 3.21536
\(897\) −6.60587e134 −0.00327402
\(898\) −1.20156e137 −0.565452
\(899\) −9.27759e135 −0.0414581
\(900\) −3.44293e137 −1.46100
\(901\) 1.73330e137 0.698507
\(902\) 1.82291e136 0.0697689
\(903\) −7.86979e136 −0.286077
\(904\) 6.85316e137 2.36624
\(905\) 6.52815e137 2.14107
\(906\) 7.08964e137 2.20884
\(907\) −5.22741e137 −1.54721 −0.773603 0.633671i \(-0.781547\pi\)
−0.773603 + 0.633671i \(0.781547\pi\)
\(908\) −7.64306e137 −2.14919
\(909\) −1.11948e137 −0.299085
\(910\) −1.54516e136 −0.0392238
\(911\) 2.17562e137 0.524781 0.262391 0.964962i \(-0.415489\pi\)
0.262391 + 0.964962i \(0.415489\pi\)
\(912\) −2.97672e136 −0.0682304
\(913\) 1.02246e137 0.222718
\(914\) −7.90224e137 −1.63588
\(915\) −1.02292e138 −2.01261
\(916\) 1.06538e138 1.99235
\(917\) −2.21043e136 −0.0392918
\(918\) −4.71417e137 −0.796563
\(919\) −2.13720e137 −0.343301 −0.171650 0.985158i \(-0.554910\pi\)
−0.171650 + 0.985158i \(0.554910\pi\)
\(920\) 8.99153e137 1.37309
\(921\) 1.29928e137 0.188639
\(922\) −2.06821e138 −2.85500
\(923\) 8.10468e135 0.0106379
\(924\) −3.52612e137 −0.440099
\(925\) 1.32188e138 1.56893
\(926\) −1.28751e138 −1.45325
\(927\) 1.03418e137 0.111017
\(928\) 5.47675e137 0.559168
\(929\) 1.80381e138 1.75171 0.875853 0.482578i \(-0.160300\pi\)
0.875853 + 0.482578i \(0.160300\pi\)
\(930\) −1.04376e137 −0.0964152
\(931\) −4.04546e137 −0.355474
\(932\) 3.84861e138 3.21710
\(933\) −1.10890e138 −0.881855
\(934\) 2.75048e138 2.08104
\(935\) −1.86486e137 −0.134247
\(936\) −5.41465e135 −0.00370889
\(937\) −1.75823e138 −1.14600 −0.573001 0.819555i \(-0.694221\pi\)
−0.573001 + 0.819555i \(0.694221\pi\)
\(938\) −8.16386e137 −0.506365
\(939\) −1.04422e138 −0.616370
\(940\) −5.74751e138 −3.22875
\(941\) −2.47445e138 −1.32301 −0.661503 0.749943i \(-0.730081\pi\)
−0.661503 + 0.749943i \(0.730081\pi\)
\(942\) 3.09336e138 1.57421
\(943\) 2.75988e137 0.133689
\(944\) −1.13690e138 −0.524233
\(945\) 7.81080e138 3.42860
\(946\) −1.40769e137 −0.0588262
\(947\) 5.09791e137 0.202823 0.101412 0.994845i \(-0.467664\pi\)
0.101412 + 0.994845i \(0.467664\pi\)
\(948\) −4.19619e138 −1.58953
\(949\) 2.16497e136 0.00780861
\(950\) 1.84274e138 0.632874
\(951\) −2.48680e138 −0.813294
\(952\) 3.40398e138 1.06015
\(953\) 4.08950e138 1.21297 0.606485 0.795095i \(-0.292579\pi\)
0.606485 + 0.795095i \(0.292579\pi\)
\(954\) −3.44996e138 −0.974574
\(955\) −9.16351e138 −2.46550
\(956\) −1.48190e138 −0.379775
\(957\) −5.82006e137 −0.142077
\(958\) 4.67736e138 1.08769
\(959\) −6.77196e138 −1.50020
\(960\) 9.56935e138 2.01962
\(961\) −4.96524e138 −0.998395
\(962\) 4.60281e136 0.00881825
\(963\) 1.33018e138 0.242822
\(964\) 7.04930e138 1.22621
\(965\) 9.72403e138 1.61186
\(966\) −8.26586e138 −1.30572
\(967\) −8.90772e138 −1.34102 −0.670511 0.741900i \(-0.733925\pi\)
−0.670511 + 0.741900i \(0.733925\pi\)
\(968\) 9.36174e138 1.34324
\(969\) 4.32934e137 0.0592060
\(970\) −8.04862e138 −1.04915
\(971\) −9.30395e138 −1.15604 −0.578021 0.816022i \(-0.696175\pi\)
−0.578021 + 0.816022i \(0.696175\pi\)
\(972\) 1.05102e139 1.24489
\(973\) 2.95939e139 3.34161
\(974\) −3.59563e138 −0.387065
\(975\) −1.27661e137 −0.0131022
\(976\) 7.21076e138 0.705610
\(977\) 1.24550e139 1.16210 0.581052 0.813867i \(-0.302641\pi\)
0.581052 + 0.813867i \(0.302641\pi\)
\(978\) 5.50106e138 0.489429
\(979\) 6.58426e137 0.0558614
\(980\) −8.44603e139 −6.83345
\(981\) −2.48035e138 −0.191384
\(982\) 4.31750e137 0.0317723
\(983\) −4.90628e138 −0.344361 −0.172181 0.985065i \(-0.555081\pi\)
−0.172181 + 0.985065i \(0.555081\pi\)
\(984\) −3.99060e138 −0.267157
\(985\) −1.76944e139 −1.12993
\(986\) 1.24396e139 0.757755
\(987\) 2.38641e139 1.38675
\(988\) 4.14409e136 0.00229737
\(989\) −2.13124e138 −0.112721
\(990\) 3.71182e138 0.187305
\(991\) −4.86403e138 −0.234192 −0.117096 0.993121i \(-0.537358\pi\)
−0.117096 + 0.993121i \(0.537358\pi\)
\(992\) −4.71133e137 −0.0216447
\(993\) −1.55789e138 −0.0682964
\(994\) 1.01413e140 4.24255
\(995\) 3.51852e139 1.40471
\(996\) −4.95572e139 −1.88820
\(997\) 1.15939e139 0.421602 0.210801 0.977529i \(-0.432393\pi\)
0.210801 + 0.977529i \(0.432393\pi\)
\(998\) −7.09332e139 −2.46195
\(999\) −2.32672e139 −0.770813
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1.94.a.a.1.1 7
3.2 odd 2 9.94.a.b.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1.94.a.a.1.1 7 1.1 even 1 trivial
9.94.a.b.1.7 7 3.2 odd 2