Properties

Label 1.70.a.a.1.5
Level 1
Weight 70
Character 1.1
Self dual Yes
Analytic conductor 30.151
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 70 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(30.1514953292\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{17}\cdot 5^{5}\cdot 7^{2}\cdot 17\cdot 23 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.28427e8\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+3.33859e10 q^{2}\) \(-1.33163e16 q^{3}\) \(+5.24322e20 q^{4}\) \(+1.09328e24 q^{5}\) \(-4.44575e26 q^{6}\) \(-1.48686e29 q^{7}\) \(-2.20259e30 q^{8}\) \(-6.57062e32 q^{9}\) \(+O(q^{10})\) \(q\)\(+3.33859e10 q^{2}\) \(-1.33163e16 q^{3}\) \(+5.24322e20 q^{4}\) \(+1.09328e24 q^{5}\) \(-4.44575e26 q^{6}\) \(-1.48686e29 q^{7}\) \(-2.20259e30 q^{8}\) \(-6.57062e32 q^{9}\) \(+3.65000e34 q^{10}\) \(+3.06873e35 q^{11}\) \(-6.98201e36 q^{12}\) \(+1.14858e38 q^{13}\) \(-4.96402e39 q^{14}\) \(-1.45583e40 q^{15}\) \(-3.83041e41 q^{16}\) \(-4.51308e42 q^{17}\) \(-2.19366e43 q^{18}\) \(+1.29128e44 q^{19}\) \(+5.73229e44 q^{20}\) \(+1.97994e45 q^{21}\) \(+1.02452e46 q^{22}\) \(-1.62820e47 q^{23}\) \(+2.93302e46 q^{24}\) \(-4.98815e47 q^{25}\) \(+3.83464e48 q^{26}\) \(+1.98605e49 q^{27}\) \(-7.79595e49 q^{28}\) \(-5.30666e50 q^{29}\) \(-4.86043e50 q^{30}\) \(+1.03303e51 q^{31}\) \(-1.14880e52 q^{32}\) \(-4.08640e51 q^{33}\) \(-1.50673e53 q^{34}\) \(-1.62555e53 q^{35}\) \(-3.44512e53 q^{36}\) \(+3.96132e53 q^{37}\) \(+4.31107e54 q^{38}\) \(-1.52948e54 q^{39}\) \(-2.40804e54 q^{40}\) \(+3.97903e55 q^{41}\) \(+6.61022e55 q^{42}\) \(+2.19103e56 q^{43}\) \(+1.60900e56 q^{44}\) \(-7.18350e56 q^{45}\) \(-5.43589e57 q^{46}\) \(-1.05065e57 q^{47}\) \(+5.10067e57 q^{48}\) \(+1.60709e57 q^{49}\) \(-1.66534e58 q^{50}\) \(+6.00973e58 q^{51}\) \(+6.02226e58 q^{52}\) \(-7.74716e58 q^{53}\) \(+6.63061e59 q^{54}\) \(+3.35496e59 q^{55}\) \(+3.27495e59 q^{56}\) \(-1.71951e60 q^{57}\) \(-1.77168e61 q^{58}\) \(+4.93714e60 q^{59}\) \(-7.63326e60 q^{60}\) \(+4.27197e61 q^{61}\) \(+3.44885e61 q^{62}\) \(+9.76962e61 q^{63}\) \(-1.57429e62 q^{64}\) \(+1.25572e62 q^{65}\) \(-1.36428e62 q^{66}\) \(+1.10432e63 q^{67}\) \(-2.36631e63 q^{68}\) \(+2.16815e63 q^{69}\) \(-5.42705e63 q^{70}\) \(-1.05763e64 q^{71}\) \(+1.44724e63 q^{72}\) \(+3.43414e64 q^{73}\) \(+1.32252e64 q^{74}\) \(+6.64234e63 q^{75}\) \(+6.77049e64 q^{76}\) \(-4.56278e64 q^{77}\) \(-5.10631e64 q^{78}\) \(-3.22940e65 q^{79}\) \(-4.18769e65 q^{80}\) \(+2.83776e65 q^{81}\) \(+1.32843e66 q^{82}\) \(-1.44619e66 q^{83}\) \(+1.03813e66 q^{84}\) \(-4.93404e66 q^{85}\) \(+7.31495e66 q^{86}\) \(+7.06649e66 q^{87}\) \(-6.75914e65 q^{88}\) \(+1.81631e67 q^{89}\) \(-2.39828e67 q^{90}\) \(-1.70778e67 q^{91}\) \(-8.53701e67 q^{92}\) \(-1.37561e67 q^{93}\) \(-3.50770e67 q^{94}\) \(+1.41173e68 q^{95}\) \(+1.52977e68 q^{96}\) \(+3.55540e68 q^{97}\) \(+5.36542e67 q^{98}\) \(-2.01635e68 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(5q \) \(\mathstrut -\mathstrut 18005734368q^{2} \) \(\mathstrut -\mathstrut 4858082326815804q^{3} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!60\)\(q^{4} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(65\!\cdots\!60\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(76\!\cdots\!92\)\(q^{7} \) \(\mathstrut -\mathstrut \)\(45\!\cdots\!00\)\(q^{8} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!35\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(5q \) \(\mathstrut -\mathstrut 18005734368q^{2} \) \(\mathstrut -\mathstrut 4858082326815804q^{3} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!60\)\(q^{4} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(65\!\cdots\!60\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(76\!\cdots\!92\)\(q^{7} \) \(\mathstrut -\mathstrut \)\(45\!\cdots\!00\)\(q^{8} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!35\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!40\)\(q^{11} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!48\)\(q^{12} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!86\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!20\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!00\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(95\!\cdots\!80\)\(q^{16} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!38\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!56\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!00\)\(q^{19} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!00\)\(q^{20} \) \(\mathstrut +\mathstrut \)\(30\!\cdots\!60\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!56\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(49\!\cdots\!76\)\(q^{23} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{24} \) \(\mathstrut +\mathstrut \)\(46\!\cdots\!75\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!40\)\(q^{26} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!00\)\(q^{27} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!96\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(62\!\cdots\!50\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{30} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!40\)\(q^{31} \) \(\mathstrut -\mathstrut \)\(59\!\cdots\!08\)\(q^{32} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!68\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(74\!\cdots\!00\)\(q^{35} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!20\)\(q^{36} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!02\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!00\)\(q^{38} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!80\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!10\)\(q^{41} \) \(\mathstrut +\mathstrut \)\(29\!\cdots\!24\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!56\)\(q^{43} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!80\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!50\)\(q^{45} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!40\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!28\)\(q^{47} \) \(\mathstrut -\mathstrut \)\(32\!\cdots\!24\)\(q^{48} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!15\)\(q^{49} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!00\)\(q^{50} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!60\)\(q^{51} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!32\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!46\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!00\)\(q^{54} \) \(\mathstrut +\mathstrut \)\(90\!\cdots\!00\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{56} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!00\)\(q^{57} \) \(\mathstrut -\mathstrut \)\(21\!\cdots\!00\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{59} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!10\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!04\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(32\!\cdots\!36\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!60\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(32\!\cdots\!00\)\(q^{65} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!80\)\(q^{66} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!88\)\(q^{67} \) \(\mathstrut -\mathstrut \)\(42\!\cdots\!56\)\(q^{68} \) \(\mathstrut -\mathstrut \)\(68\!\cdots\!20\)\(q^{69} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!00\)\(q^{70} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!40\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!00\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!26\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!20\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!00\)\(q^{76} \) \(\mathstrut -\mathstrut \)\(68\!\cdots\!36\)\(q^{77} \) \(\mathstrut -\mathstrut \)\(57\!\cdots\!08\)\(q^{78} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!00\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!95\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(93\!\cdots\!16\)\(q^{82} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!16\)\(q^{83} \) \(\mathstrut +\mathstrut \)\(29\!\cdots\!20\)\(q^{84} \) \(\mathstrut +\mathstrut \)\(74\!\cdots\!00\)\(q^{85} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!60\)\(q^{86} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!00\)\(q^{87} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{89} \) \(\mathstrut -\mathstrut \)\(85\!\cdots\!00\)\(q^{90} \) \(\mathstrut -\mathstrut \)\(80\!\cdots\!40\)\(q^{91} \) \(\mathstrut -\mathstrut \)\(21\!\cdots\!88\)\(q^{92} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!88\)\(q^{93} \) \(\mathstrut -\mathstrut \)\(32\!\cdots\!80\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(78\!\cdots\!60\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!22\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(17\!\cdots\!24\)\(q^{98} \) \(\mathstrut +\mathstrut \)\(58\!\cdots\!80\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.33859e10 1.37413 0.687066 0.726595i \(-0.258899\pi\)
0.687066 + 0.726595i \(0.258899\pi\)
\(3\) −1.33163e16 −0.460998 −0.230499 0.973073i \(-0.574036\pi\)
−0.230499 + 0.973073i \(0.574036\pi\)
\(4\) 5.24322e20 0.888236
\(5\) 1.09328e24 0.839971 0.419986 0.907531i \(-0.362035\pi\)
0.419986 + 0.907531i \(0.362035\pi\)
\(6\) −4.44575e26 −0.633472
\(7\) −1.48686e29 −1.03846 −0.519228 0.854635i \(-0.673781\pi\)
−0.519228 + 0.854635i \(0.673781\pi\)
\(8\) −2.20259e30 −0.153578
\(9\) −6.57062e32 −0.787481
\(10\) 3.65000e34 1.15423
\(11\) 3.06873e35 0.362168 0.181084 0.983468i \(-0.442039\pi\)
0.181084 + 0.983468i \(0.442039\pi\)
\(12\) −6.98201e36 −0.409475
\(13\) 1.14858e38 0.425712 0.212856 0.977084i \(-0.431723\pi\)
0.212856 + 0.977084i \(0.431723\pi\)
\(14\) −4.96402e39 −1.42698
\(15\) −1.45583e40 −0.387225
\(16\) −3.83041e41 −1.09927
\(17\) −4.51308e42 −1.59950 −0.799752 0.600331i \(-0.795036\pi\)
−0.799752 + 0.600331i \(0.795036\pi\)
\(18\) −2.19366e43 −1.08210
\(19\) 1.29128e44 0.986331 0.493165 0.869936i \(-0.335840\pi\)
0.493165 + 0.869936i \(0.335840\pi\)
\(20\) 5.73229e44 0.746093
\(21\) 1.97994e45 0.478726
\(22\) 1.02452e46 0.497667
\(23\) −1.62820e47 −1.70646 −0.853232 0.521531i \(-0.825361\pi\)
−0.853232 + 0.521531i \(0.825361\pi\)
\(24\) 2.93302e46 0.0707991
\(25\) −4.98815e47 −0.294448
\(26\) 3.83464e48 0.584984
\(27\) 1.98605e49 0.824025
\(28\) −7.79595e49 −0.922395
\(29\) −5.30666e50 −1.87107 −0.935536 0.353232i \(-0.885083\pi\)
−0.935536 + 0.353232i \(0.885083\pi\)
\(30\) −4.86043e50 −0.532098
\(31\) 1.03303e51 0.364866 0.182433 0.983218i \(-0.441603\pi\)
0.182433 + 0.983218i \(0.441603\pi\)
\(32\) −1.14880e52 −1.35697
\(33\) −4.08640e51 −0.166959
\(34\) −1.50673e53 −2.19793
\(35\) −1.62555e53 −0.872274
\(36\) −3.44512e53 −0.699469
\(37\) 3.96132e53 0.312522 0.156261 0.987716i \(-0.450056\pi\)
0.156261 + 0.987716i \(0.450056\pi\)
\(38\) 4.31107e54 1.35535
\(39\) −1.52948e54 −0.196252
\(40\) −2.40804e54 −0.129001
\(41\) 3.97903e55 0.909355 0.454678 0.890656i \(-0.349754\pi\)
0.454678 + 0.890656i \(0.349754\pi\)
\(42\) 6.61022e55 0.657833
\(43\) 2.19103e56 0.968248 0.484124 0.874999i \(-0.339138\pi\)
0.484124 + 0.874999i \(0.339138\pi\)
\(44\) 1.60900e56 0.321691
\(45\) −7.18350e56 −0.661461
\(46\) −5.43589e57 −2.34491
\(47\) −1.05065e57 −0.215816 −0.107908 0.994161i \(-0.534415\pi\)
−0.107908 + 0.994161i \(0.534415\pi\)
\(48\) 5.10067e57 0.506762
\(49\) 1.60709e57 0.0783927
\(50\) −1.66534e58 −0.404610
\(51\) 6.00973e58 0.737368
\(52\) 6.02226e58 0.378133
\(53\) −7.74716e58 −0.252130 −0.126065 0.992022i \(-0.540235\pi\)
−0.126065 + 0.992022i \(0.540235\pi\)
\(54\) 6.63061e59 1.13232
\(55\) 3.35496e59 0.304211
\(56\) 3.27495e59 0.159484
\(57\) −1.71951e60 −0.454696
\(58\) −1.77168e61 −2.57110
\(59\) 4.93714e60 0.397266 0.198633 0.980074i \(-0.436350\pi\)
0.198633 + 0.980074i \(0.436350\pi\)
\(60\) −7.63326e60 −0.343947
\(61\) 4.27197e61 1.08830 0.544150 0.838988i \(-0.316852\pi\)
0.544150 + 0.838988i \(0.316852\pi\)
\(62\) 3.44885e61 0.501374
\(63\) 9.76962e61 0.817765
\(64\) −1.57429e62 −0.765378
\(65\) 1.25572e62 0.357586
\(66\) −1.36428e62 −0.229423
\(67\) 1.10432e63 1.10539 0.552695 0.833384i \(-0.313599\pi\)
0.552695 + 0.833384i \(0.313599\pi\)
\(68\) −2.36631e63 −1.42074
\(69\) 2.16815e63 0.786677
\(70\) −5.42705e63 −1.19862
\(71\) −1.05763e64 −1.43192 −0.715962 0.698139i \(-0.754012\pi\)
−0.715962 + 0.698139i \(0.754012\pi\)
\(72\) 1.44724e63 0.120940
\(73\) 3.43414e64 1.78311 0.891556 0.452910i \(-0.149614\pi\)
0.891556 + 0.452910i \(0.149614\pi\)
\(74\) 1.32252e64 0.429446
\(75\) 6.64234e63 0.135740
\(76\) 6.77049e64 0.876095
\(77\) −4.56278e64 −0.376096
\(78\) −5.10631e64 −0.269676
\(79\) −3.22940e65 −1.09897 −0.549487 0.835502i \(-0.685177\pi\)
−0.549487 + 0.835502i \(0.685177\pi\)
\(80\) −4.18769e65 −0.923357
\(81\) 2.83776e65 0.407607
\(82\) 1.32843e66 1.24957
\(83\) −1.44619e66 −0.895427 −0.447714 0.894177i \(-0.647762\pi\)
−0.447714 + 0.894177i \(0.647762\pi\)
\(84\) 1.03813e66 0.425222
\(85\) −4.93404e66 −1.34354
\(86\) 7.31495e66 1.33050
\(87\) 7.06649e66 0.862560
\(88\) −6.75914e65 −0.0556211
\(89\) 1.81631e67 1.01213 0.506064 0.862496i \(-0.331100\pi\)
0.506064 + 0.862496i \(0.331100\pi\)
\(90\) −2.39828e67 −0.908935
\(91\) −1.70778e67 −0.442084
\(92\) −8.53701e67 −1.51574
\(93\) −1.37561e67 −0.168202
\(94\) −3.50770e67 −0.296560
\(95\) 1.41173e68 0.828490
\(96\) 1.52977e68 0.625559
\(97\) 3.55540e68 1.01687 0.508433 0.861102i \(-0.330225\pi\)
0.508433 + 0.861102i \(0.330225\pi\)
\(98\) 5.36542e67 0.107722
\(99\) −2.01635e68 −0.285201
\(100\) −2.61540e68 −0.261540
\(101\) −9.36000e68 −0.664031 −0.332016 0.943274i \(-0.607729\pi\)
−0.332016 + 0.943274i \(0.607729\pi\)
\(102\) 2.00640e69 1.01324
\(103\) −3.11841e69 −1.12473 −0.562366 0.826888i \(-0.690109\pi\)
−0.562366 + 0.826888i \(0.690109\pi\)
\(104\) −2.52985e68 −0.0653800
\(105\) 2.16463e69 0.402116
\(106\) −2.58646e69 −0.346460
\(107\) −1.12774e70 −1.09262 −0.546311 0.837583i \(-0.683968\pi\)
−0.546311 + 0.837583i \(0.683968\pi\)
\(108\) 1.04133e70 0.731929
\(109\) 9.74708e69 0.498495 0.249247 0.968440i \(-0.419817\pi\)
0.249247 + 0.968440i \(0.419817\pi\)
\(110\) 1.12008e70 0.418026
\(111\) −5.27500e69 −0.144072
\(112\) 5.69529e70 1.14155
\(113\) 5.90939e70 0.871639 0.435819 0.900034i \(-0.356459\pi\)
0.435819 + 0.900034i \(0.356459\pi\)
\(114\) −5.74073e70 −0.624813
\(115\) −1.78007e71 −1.43338
\(116\) −2.78240e71 −1.66195
\(117\) −7.54689e70 −0.335240
\(118\) 1.64831e71 0.545895
\(119\) 6.71033e71 1.66102
\(120\) 3.20660e70 0.0594692
\(121\) −6.23781e71 −0.868834
\(122\) 1.42624e72 1.49547
\(123\) −5.29857e71 −0.419211
\(124\) 5.41639e71 0.324087
\(125\) −2.39742e72 −1.08730
\(126\) 3.26167e72 1.12372
\(127\) −3.53335e72 −0.926740 −0.463370 0.886165i \(-0.653360\pi\)
−0.463370 + 0.886165i \(0.653360\pi\)
\(128\) 1.52539e72 0.305237
\(129\) −2.91763e72 −0.446360
\(130\) 4.19232e72 0.491370
\(131\) −1.16166e73 −1.04525 −0.522624 0.852563i \(-0.675047\pi\)
−0.522624 + 0.852563i \(0.675047\pi\)
\(132\) −2.14259e72 −0.148299
\(133\) −1.91996e73 −1.02426
\(134\) 3.68688e73 1.51895
\(135\) 2.17130e73 0.692157
\(136\) 9.94045e72 0.245648
\(137\) 2.02412e73 0.388486 0.194243 0.980953i \(-0.437775\pi\)
0.194243 + 0.980953i \(0.437775\pi\)
\(138\) 7.23857e73 1.08100
\(139\) −7.74542e73 −0.901643 −0.450821 0.892614i \(-0.648869\pi\)
−0.450821 + 0.892614i \(0.648869\pi\)
\(140\) −8.52312e73 −0.774785
\(141\) 1.39908e73 0.0994908
\(142\) −3.53099e74 −1.96765
\(143\) 3.52468e73 0.154179
\(144\) 2.51682e74 0.865656
\(145\) −5.80164e74 −1.57165
\(146\) 1.14652e75 2.45023
\(147\) −2.14004e73 −0.0361389
\(148\) 2.07701e74 0.277594
\(149\) 3.21877e74 0.341007 0.170504 0.985357i \(-0.445461\pi\)
0.170504 + 0.985357i \(0.445461\pi\)
\(150\) 2.21761e74 0.186525
\(151\) −2.24095e75 −1.49874 −0.749371 0.662150i \(-0.769644\pi\)
−0.749371 + 0.662150i \(0.769644\pi\)
\(152\) −2.84417e74 −0.151479
\(153\) 2.96537e75 1.25958
\(154\) −1.52332e75 −0.516806
\(155\) 1.12938e75 0.306477
\(156\) −8.01940e74 −0.174318
\(157\) −3.05508e74 −0.0532703 −0.0266351 0.999645i \(-0.508479\pi\)
−0.0266351 + 0.999645i \(0.508479\pi\)
\(158\) −1.07817e76 −1.51013
\(159\) 1.03163e75 0.116231
\(160\) −1.25595e76 −1.13981
\(161\) 2.42091e76 1.77209
\(162\) 9.47410e75 0.560106
\(163\) 1.23091e76 0.588510 0.294255 0.955727i \(-0.404929\pi\)
0.294255 + 0.955727i \(0.404929\pi\)
\(164\) 2.08629e76 0.807722
\(165\) −4.46756e75 −0.140241
\(166\) −4.82822e76 −1.23043
\(167\) 5.42598e76 1.12398 0.561992 0.827143i \(-0.310035\pi\)
0.561992 + 0.827143i \(0.310035\pi\)
\(168\) −4.36100e75 −0.0735218
\(169\) −5.96009e76 −0.818769
\(170\) −1.64727e77 −1.84620
\(171\) −8.48454e76 −0.776717
\(172\) 1.14881e77 0.860033
\(173\) 8.73350e76 0.535301 0.267650 0.963516i \(-0.413753\pi\)
0.267650 + 0.963516i \(0.413753\pi\)
\(174\) 2.35921e77 1.18527
\(175\) 7.41669e76 0.305772
\(176\) −1.17545e77 −0.398122
\(177\) −6.57442e76 −0.183139
\(178\) 6.06392e77 1.39080
\(179\) −5.63287e77 −1.06488 −0.532439 0.846468i \(-0.678725\pi\)
−0.532439 + 0.846468i \(0.678725\pi\)
\(180\) −3.76647e77 −0.587534
\(181\) 8.30874e77 1.07059 0.535296 0.844664i \(-0.320200\pi\)
0.535296 + 0.844664i \(0.320200\pi\)
\(182\) −5.70158e77 −0.607481
\(183\) −5.68867e77 −0.501704
\(184\) 3.58625e77 0.262075
\(185\) 4.33082e77 0.262510
\(186\) −4.59258e77 −0.231132
\(187\) −1.38494e78 −0.579290
\(188\) −5.50882e77 −0.191696
\(189\) −2.95298e78 −0.855714
\(190\) 4.71319e78 1.13845
\(191\) −2.30079e78 −0.463688 −0.231844 0.972753i \(-0.574476\pi\)
−0.231844 + 0.972753i \(0.574476\pi\)
\(192\) 2.09637e78 0.352837
\(193\) 8.58446e78 1.20777 0.603887 0.797070i \(-0.293618\pi\)
0.603887 + 0.797070i \(0.293618\pi\)
\(194\) 1.18700e79 1.39731
\(195\) −1.67214e78 −0.164846
\(196\) 8.42633e77 0.0696312
\(197\) −2.11212e79 −1.46431 −0.732156 0.681137i \(-0.761486\pi\)
−0.732156 + 0.681137i \(0.761486\pi\)
\(198\) −6.73175e78 −0.391903
\(199\) −2.19954e79 −1.07622 −0.538111 0.842874i \(-0.680862\pi\)
−0.538111 + 0.842874i \(0.680862\pi\)
\(200\) 1.09868e78 0.0452207
\(201\) −1.47055e79 −0.509583
\(202\) −3.12492e79 −0.912466
\(203\) 7.89028e79 1.94303
\(204\) 3.15104e79 0.654957
\(205\) 4.35017e79 0.763832
\(206\) −1.04111e80 −1.54553
\(207\) 1.06983e80 1.34381
\(208\) −4.39953e79 −0.467974
\(209\) 3.96260e79 0.357218
\(210\) 7.22679e79 0.552561
\(211\) −1.54836e80 −1.00491 −0.502455 0.864603i \(-0.667570\pi\)
−0.502455 + 0.864603i \(0.667570\pi\)
\(212\) −4.06201e79 −0.223951
\(213\) 1.40837e80 0.660114
\(214\) −3.76507e80 −1.50141
\(215\) 2.39540e80 0.813301
\(216\) −4.37445e79 −0.126552
\(217\) −1.53597e80 −0.378898
\(218\) 3.25415e80 0.684997
\(219\) −4.57298e80 −0.822011
\(220\) 1.75908e80 0.270211
\(221\) −5.18364e80 −0.680928
\(222\) −1.76111e80 −0.197974
\(223\) 5.11766e80 0.492667 0.246333 0.969185i \(-0.420774\pi\)
0.246333 + 0.969185i \(0.420774\pi\)
\(224\) 1.70810e81 1.40915
\(225\) 3.27752e80 0.231872
\(226\) 1.97290e81 1.19775
\(227\) −3.41994e80 −0.178290 −0.0891450 0.996019i \(-0.528413\pi\)
−0.0891450 + 0.996019i \(0.528413\pi\)
\(228\) −9.01576e80 −0.403878
\(229\) −1.35567e81 −0.522192 −0.261096 0.965313i \(-0.584084\pi\)
−0.261096 + 0.965313i \(0.584084\pi\)
\(230\) −5.94293e81 −1.96965
\(231\) 6.07591e80 0.173380
\(232\) 1.16884e81 0.287355
\(233\) −2.21214e81 −0.468849 −0.234425 0.972134i \(-0.575321\pi\)
−0.234425 + 0.972134i \(0.575321\pi\)
\(234\) −2.51960e81 −0.460664
\(235\) −1.14865e81 −0.181279
\(236\) 2.58865e81 0.352866
\(237\) 4.30036e81 0.506625
\(238\) 2.24030e82 2.28245
\(239\) −1.28714e81 −0.113474 −0.0567371 0.998389i \(-0.518070\pi\)
−0.0567371 + 0.998389i \(0.518070\pi\)
\(240\) 5.57643e81 0.425666
\(241\) −5.65464e81 −0.373953 −0.186976 0.982364i \(-0.559869\pi\)
−0.186976 + 0.982364i \(0.559869\pi\)
\(242\) −2.08255e82 −1.19389
\(243\) −2.03501e82 −1.01193
\(244\) 2.23989e82 0.966668
\(245\) 1.75699e81 0.0658476
\(246\) −1.76898e82 −0.576051
\(247\) 1.48314e82 0.419893
\(248\) −2.27533e81 −0.0560354
\(249\) 1.92578e82 0.412790
\(250\) −8.00401e82 −1.49409
\(251\) 2.72558e82 0.443319 0.221659 0.975124i \(-0.428853\pi\)
0.221659 + 0.975124i \(0.428853\pi\)
\(252\) 5.12243e82 0.726369
\(253\) −4.99650e82 −0.618028
\(254\) −1.17964e83 −1.27346
\(255\) 6.57029e82 0.619368
\(256\) 1.43856e83 1.18481
\(257\) 1.85886e83 1.33830 0.669151 0.743126i \(-0.266658\pi\)
0.669151 + 0.743126i \(0.266658\pi\)
\(258\) −9.74078e82 −0.613358
\(259\) −5.88994e82 −0.324541
\(260\) 6.58399e82 0.317621
\(261\) 3.48681e83 1.47343
\(262\) −3.87830e83 −1.43631
\(263\) −1.49982e83 −0.487040 −0.243520 0.969896i \(-0.578302\pi\)
−0.243520 + 0.969896i \(0.578302\pi\)
\(264\) 9.00065e81 0.0256412
\(265\) −8.46978e82 −0.211782
\(266\) −6.40997e83 −1.40747
\(267\) −2.41865e83 −0.466589
\(268\) 5.79021e83 0.981848
\(269\) −1.02493e84 −1.52842 −0.764210 0.644968i \(-0.776871\pi\)
−0.764210 + 0.644968i \(0.776871\pi\)
\(270\) 7.24908e83 0.951115
\(271\) 3.51588e83 0.406063 0.203031 0.979172i \(-0.434921\pi\)
0.203031 + 0.979172i \(0.434921\pi\)
\(272\) 1.72869e84 1.75829
\(273\) 2.27413e83 0.203800
\(274\) 6.75769e83 0.533831
\(275\) −1.53073e83 −0.106640
\(276\) 1.13681e84 0.698755
\(277\) −2.11779e84 −1.14903 −0.574516 0.818494i \(-0.694810\pi\)
−0.574516 + 0.818494i \(0.694810\pi\)
\(278\) −2.58588e84 −1.23898
\(279\) −6.78763e83 −0.287325
\(280\) 3.58042e83 0.133962
\(281\) −1.81711e84 −0.601192 −0.300596 0.953752i \(-0.597186\pi\)
−0.300596 + 0.953752i \(0.597186\pi\)
\(282\) 4.67095e83 0.136713
\(283\) 7.40610e84 1.91848 0.959240 0.282591i \(-0.0911940\pi\)
0.959240 + 0.282591i \(0.0911940\pi\)
\(284\) −5.54538e84 −1.27189
\(285\) −1.87990e84 −0.381932
\(286\) 1.17675e84 0.211863
\(287\) −5.91626e84 −0.944326
\(288\) 7.54832e84 1.06859
\(289\) 1.24067e85 1.55841
\(290\) −1.93693e85 −2.15965
\(291\) −4.73446e84 −0.468773
\(292\) 1.80059e85 1.58383
\(293\) 4.21629e84 0.329608 0.164804 0.986326i \(-0.447301\pi\)
0.164804 + 0.986326i \(0.447301\pi\)
\(294\) −7.14473e83 −0.0496595
\(295\) 5.39765e84 0.333692
\(296\) −8.72516e83 −0.0479965
\(297\) 6.09465e84 0.298436
\(298\) 1.07462e85 0.468589
\(299\) −1.87012e85 −0.726463
\(300\) 3.48273e84 0.120569
\(301\) −3.25776e85 −1.00548
\(302\) −7.48161e85 −2.05947
\(303\) 1.24640e85 0.306117
\(304\) −4.94614e85 −1.08425
\(305\) 4.67044e85 0.914141
\(306\) 9.90017e85 1.73083
\(307\) 4.27730e85 0.668183 0.334092 0.942541i \(-0.391571\pi\)
0.334092 + 0.942541i \(0.391571\pi\)
\(308\) −2.39236e85 −0.334062
\(309\) 4.15256e85 0.518499
\(310\) 3.77055e85 0.421140
\(311\) −9.59066e83 −0.00958550 −0.00479275 0.999989i \(-0.501526\pi\)
−0.00479275 + 0.999989i \(0.501526\pi\)
\(312\) 3.36881e84 0.0301400
\(313\) −9.21743e84 −0.0738465 −0.0369233 0.999318i \(-0.511756\pi\)
−0.0369233 + 0.999318i \(0.511756\pi\)
\(314\) −1.01997e85 −0.0732003
\(315\) 1.06809e86 0.686899
\(316\) −1.69325e86 −0.976149
\(317\) −2.74826e86 −1.42074 −0.710368 0.703831i \(-0.751471\pi\)
−0.710368 + 0.703831i \(0.751471\pi\)
\(318\) 3.44419e85 0.159717
\(319\) −1.62847e86 −0.677643
\(320\) −1.72113e86 −0.642895
\(321\) 1.50173e86 0.503696
\(322\) 8.08242e86 2.43508
\(323\) −5.82767e86 −1.57764
\(324\) 1.48790e86 0.362052
\(325\) −5.72929e85 −0.125350
\(326\) 4.10950e86 0.808690
\(327\) −1.29795e86 −0.229805
\(328\) −8.76415e85 −0.139657
\(329\) 1.56218e86 0.224116
\(330\) −1.49153e86 −0.192709
\(331\) 2.93761e86 0.341924 0.170962 0.985278i \(-0.445313\pi\)
0.170962 + 0.985278i \(0.445313\pi\)
\(332\) −7.58268e86 −0.795351
\(333\) −2.60284e86 −0.246105
\(334\) 1.81151e87 1.54450
\(335\) 1.20733e87 0.928496
\(336\) −7.58399e86 −0.526251
\(337\) −9.85960e85 −0.0617487 −0.0308743 0.999523i \(-0.509829\pi\)
−0.0308743 + 0.999523i \(0.509829\pi\)
\(338\) −1.98983e87 −1.12510
\(339\) −7.86910e86 −0.401824
\(340\) −2.58703e87 −1.19338
\(341\) 3.17008e86 0.132143
\(342\) −2.83264e87 −1.06731
\(343\) 2.80919e87 0.957049
\(344\) −4.82594e86 −0.148702
\(345\) 2.37039e87 0.660786
\(346\) 2.91576e87 0.735573
\(347\) 2.16749e87 0.494984 0.247492 0.968890i \(-0.420394\pi\)
0.247492 + 0.968890i \(0.420394\pi\)
\(348\) 3.70512e87 0.766157
\(349\) 5.35272e86 0.100253 0.0501265 0.998743i \(-0.484038\pi\)
0.0501265 + 0.998743i \(0.484038\pi\)
\(350\) 2.47613e87 0.420170
\(351\) 2.28114e87 0.350797
\(352\) −3.52535e87 −0.491451
\(353\) −5.11860e87 −0.647029 −0.323515 0.946223i \(-0.604864\pi\)
−0.323515 + 0.946223i \(0.604864\pi\)
\(354\) −2.19493e87 −0.251656
\(355\) −1.15628e88 −1.20278
\(356\) 9.52333e87 0.899009
\(357\) −8.93565e87 −0.765725
\(358\) −1.88058e88 −1.46328
\(359\) 4.89613e87 0.346015 0.173007 0.984921i \(-0.444652\pi\)
0.173007 + 0.984921i \(0.444652\pi\)
\(360\) 1.58223e87 0.101586
\(361\) −4.65361e86 −0.0271513
\(362\) 2.77395e88 1.47113
\(363\) 8.30643e87 0.400531
\(364\) −8.95428e87 −0.392675
\(365\) 3.75446e88 1.49776
\(366\) −1.89921e88 −0.689407
\(367\) −5.99403e88 −1.98034 −0.990170 0.139870i \(-0.955332\pi\)
−0.990170 + 0.139870i \(0.955332\pi\)
\(368\) 6.23667e88 1.87587
\(369\) −2.61447e88 −0.716100
\(370\) 1.44588e88 0.360723
\(371\) 1.15190e88 0.261826
\(372\) −7.21261e87 −0.149404
\(373\) 3.54730e88 0.669798 0.334899 0.942254i \(-0.391298\pi\)
0.334899 + 0.942254i \(0.391298\pi\)
\(374\) −4.62375e88 −0.796020
\(375\) 3.19247e88 0.501243
\(376\) 2.31416e87 0.0331446
\(377\) −6.09513e88 −0.796538
\(378\) −9.85880e88 −1.17586
\(379\) 2.22937e88 0.242733 0.121367 0.992608i \(-0.461272\pi\)
0.121367 + 0.992608i \(0.461272\pi\)
\(380\) 7.40201e88 0.735895
\(381\) 4.70510e88 0.427225
\(382\) −7.68140e88 −0.637168
\(383\) −1.24464e89 −0.943377 −0.471688 0.881765i \(-0.656355\pi\)
−0.471688 + 0.881765i \(0.656355\pi\)
\(384\) −2.03125e88 −0.140714
\(385\) −4.98837e88 −0.315910
\(386\) 2.86600e89 1.65964
\(387\) −1.43964e89 −0.762477
\(388\) 1.86418e89 0.903217
\(389\) 5.53987e88 0.245606 0.122803 0.992431i \(-0.460812\pi\)
0.122803 + 0.992431i \(0.460812\pi\)
\(390\) −5.58260e88 −0.226521
\(391\) 7.34819e89 2.72950
\(392\) −3.53976e87 −0.0120394
\(393\) 1.54690e89 0.481857
\(394\) −7.05150e89 −2.01216
\(395\) −3.53063e89 −0.923107
\(396\) −1.05721e89 −0.253326
\(397\) −4.52792e89 −0.994549 −0.497275 0.867593i \(-0.665666\pi\)
−0.497275 + 0.867593i \(0.665666\pi\)
\(398\) −7.34338e89 −1.47887
\(399\) 2.55667e89 0.472183
\(400\) 1.91066e89 0.323679
\(401\) 8.61105e89 1.33837 0.669184 0.743097i \(-0.266644\pi\)
0.669184 + 0.743097i \(0.266644\pi\)
\(402\) −4.90955e89 −0.700233
\(403\) 1.18652e89 0.155328
\(404\) −4.90766e89 −0.589817
\(405\) 3.10245e89 0.342378
\(406\) 2.63424e90 2.66997
\(407\) 1.21562e89 0.113186
\(408\) −1.32370e89 −0.113243
\(409\) −2.16606e90 −1.70301 −0.851503 0.524349i \(-0.824309\pi\)
−0.851503 + 0.524349i \(0.824309\pi\)
\(410\) 1.45234e90 1.04961
\(411\) −2.69537e89 −0.179091
\(412\) −1.63505e90 −0.999028
\(413\) −7.34085e89 −0.412543
\(414\) 3.57172e90 1.84657
\(415\) −1.58108e90 −0.752133
\(416\) −1.31949e90 −0.577677
\(417\) 1.03140e90 0.415656
\(418\) 1.32295e90 0.490864
\(419\) −4.26463e90 −1.45713 −0.728564 0.684978i \(-0.759812\pi\)
−0.728564 + 0.684978i \(0.759812\pi\)
\(420\) 1.13496e90 0.357174
\(421\) 2.14948e90 0.623161 0.311580 0.950220i \(-0.399142\pi\)
0.311580 + 0.950220i \(0.399142\pi\)
\(422\) −5.16934e90 −1.38088
\(423\) 6.90346e89 0.169951
\(424\) 1.70638e89 0.0387216
\(425\) 2.25119e90 0.470971
\(426\) 4.70195e90 0.907083
\(427\) −6.35183e90 −1.13015
\(428\) −5.91301e90 −0.970506
\(429\) −4.69356e89 −0.0710764
\(430\) 7.99726e90 1.11758
\(431\) 1.33305e91 1.71942 0.859709 0.510784i \(-0.170645\pi\)
0.859709 + 0.510784i \(0.170645\pi\)
\(432\) −7.60738e90 −0.905828
\(433\) 1.51128e91 1.66155 0.830775 0.556609i \(-0.187898\pi\)
0.830775 + 0.556609i \(0.187898\pi\)
\(434\) −5.12797e90 −0.520655
\(435\) 7.72562e90 0.724526
\(436\) 5.11061e90 0.442781
\(437\) −2.10247e91 −1.68314
\(438\) −1.52673e91 −1.12955
\(439\) 2.64868e90 0.181135 0.0905676 0.995890i \(-0.471132\pi\)
0.0905676 + 0.995890i \(0.471132\pi\)
\(440\) −7.38960e89 −0.0467201
\(441\) −1.05596e90 −0.0617327
\(442\) −1.73060e91 −0.935684
\(443\) −2.29504e91 −1.14779 −0.573895 0.818929i \(-0.694568\pi\)
−0.573895 + 0.818929i \(0.694568\pi\)
\(444\) −2.76580e90 −0.127970
\(445\) 1.98573e91 0.850158
\(446\) 1.70858e91 0.676989
\(447\) −4.28620e90 −0.157204
\(448\) 2.34075e91 0.794812
\(449\) 2.43709e90 0.0766254 0.0383127 0.999266i \(-0.487802\pi\)
0.0383127 + 0.999266i \(0.487802\pi\)
\(450\) 1.09423e91 0.318623
\(451\) 1.22105e91 0.329340
\(452\) 3.09842e91 0.774221
\(453\) 2.98410e91 0.690917
\(454\) −1.14178e91 −0.244994
\(455\) −1.86708e91 −0.371338
\(456\) 3.78737e90 0.0698313
\(457\) −1.52668e91 −0.260999 −0.130499 0.991448i \(-0.541658\pi\)
−0.130499 + 0.991448i \(0.541658\pi\)
\(458\) −4.52603e91 −0.717560
\(459\) −8.96320e91 −1.31803
\(460\) −9.33331e91 −1.27318
\(461\) 8.38473e91 1.06122 0.530612 0.847615i \(-0.321962\pi\)
0.530612 + 0.847615i \(0.321962\pi\)
\(462\) 2.02850e91 0.238246
\(463\) −4.55428e91 −0.496450 −0.248225 0.968702i \(-0.579847\pi\)
−0.248225 + 0.968702i \(0.579847\pi\)
\(464\) 2.03267e92 2.05682
\(465\) −1.50392e91 −0.141285
\(466\) −7.38542e91 −0.644260
\(467\) 8.33552e91 0.675306 0.337653 0.941271i \(-0.390367\pi\)
0.337653 + 0.941271i \(0.390367\pi\)
\(468\) −3.95700e91 −0.297772
\(469\) −1.64198e92 −1.14790
\(470\) −3.83489e91 −0.249102
\(471\) 4.06823e90 0.0245575
\(472\) −1.08745e91 −0.0610112
\(473\) 6.72367e91 0.350669
\(474\) 1.43571e92 0.696169
\(475\) −6.44111e91 −0.290423
\(476\) 3.51837e92 1.47537
\(477\) 5.09037e91 0.198548
\(478\) −4.29722e91 −0.155928
\(479\) −3.70416e91 −0.125059 −0.0625294 0.998043i \(-0.519917\pi\)
−0.0625294 + 0.998043i \(0.519917\pi\)
\(480\) 1.67246e92 0.525451
\(481\) 4.54990e91 0.133044
\(482\) −1.88785e92 −0.513860
\(483\) −3.22375e92 −0.816930
\(484\) −3.27062e92 −0.771730
\(485\) 3.88703e92 0.854138
\(486\) −6.79408e92 −1.39053
\(487\) 2.37954e91 0.0453674 0.0226837 0.999743i \(-0.492779\pi\)
0.0226837 + 0.999743i \(0.492779\pi\)
\(488\) −9.40939e91 −0.167139
\(489\) −1.63911e92 −0.271302
\(490\) 5.86588e91 0.0904833
\(491\) −9.67144e92 −1.39053 −0.695264 0.718755i \(-0.744712\pi\)
−0.695264 + 0.718755i \(0.744712\pi\)
\(492\) −2.77816e92 −0.372358
\(493\) 2.39494e93 2.99279
\(494\) 4.95161e92 0.576988
\(495\) −2.20442e92 −0.239560
\(496\) −3.95691e92 −0.401087
\(497\) 1.57255e93 1.48699
\(498\) 6.42939e92 0.567228
\(499\) 4.76253e92 0.392075 0.196038 0.980596i \(-0.437193\pi\)
0.196038 + 0.980596i \(0.437193\pi\)
\(500\) −1.25702e93 −0.965779
\(501\) −7.22538e92 −0.518154
\(502\) 9.09961e92 0.609178
\(503\) −1.36831e93 −0.855241 −0.427621 0.903958i \(-0.640648\pi\)
−0.427621 + 0.903958i \(0.640648\pi\)
\(504\) −2.15184e92 −0.125591
\(505\) −1.02331e93 −0.557767
\(506\) −1.66813e93 −0.849251
\(507\) 7.93661e92 0.377451
\(508\) −1.85261e93 −0.823164
\(509\) −1.95379e92 −0.0811174 −0.0405587 0.999177i \(-0.512914\pi\)
−0.0405587 + 0.999177i \(0.512914\pi\)
\(510\) 2.19355e93 0.851092
\(511\) −5.10609e93 −1.85169
\(512\) 3.90234e93 1.32285
\(513\) 2.56456e93 0.812761
\(514\) 6.20598e93 1.83900
\(515\) −3.40928e93 −0.944743
\(516\) −1.52978e93 −0.396473
\(517\) −3.22417e92 −0.0781618
\(518\) −1.96641e93 −0.445962
\(519\) −1.16298e93 −0.246773
\(520\) −2.76582e92 −0.0549173
\(521\) −5.63899e92 −0.104785 −0.0523926 0.998627i \(-0.516685\pi\)
−0.0523926 + 0.998627i \(0.516685\pi\)
\(522\) 1.16410e94 2.02469
\(523\) 3.06121e93 0.498408 0.249204 0.968451i \(-0.419831\pi\)
0.249204 + 0.968451i \(0.419831\pi\)
\(524\) −6.09084e93 −0.928427
\(525\) −9.87625e92 −0.140960
\(526\) −5.00727e93 −0.669257
\(527\) −4.66213e93 −0.583604
\(528\) 1.56526e93 0.183533
\(529\) 1.74066e94 1.91202
\(530\) −2.82771e93 −0.291016
\(531\) −3.24401e93 −0.312839
\(532\) −1.00668e94 −0.909787
\(533\) 4.57023e93 0.387124
\(534\) −8.07487e93 −0.641154
\(535\) −1.23293e94 −0.917771
\(536\) −2.43237e93 −0.169764
\(537\) 7.50087e93 0.490907
\(538\) −3.42184e94 −2.10025
\(539\) 4.93172e92 0.0283914
\(540\) 1.13846e94 0.614799
\(541\) 3.42402e94 1.73473 0.867363 0.497676i \(-0.165813\pi\)
0.867363 + 0.497676i \(0.165813\pi\)
\(542\) 1.17381e94 0.557983
\(543\) −1.10641e94 −0.493541
\(544\) 5.18461e94 2.17047
\(545\) 1.06562e94 0.418721
\(546\) 7.59238e93 0.280047
\(547\) −9.21148e93 −0.318982 −0.159491 0.987199i \(-0.550985\pi\)
−0.159491 + 0.987199i \(0.550985\pi\)
\(548\) 1.06129e94 0.345068
\(549\) −2.80695e94 −0.857016
\(550\) −5.11047e93 −0.146537
\(551\) −6.85241e94 −1.84550
\(552\) −4.77555e93 −0.120816
\(553\) 4.80168e94 1.14124
\(554\) −7.07045e94 −1.57892
\(555\) −5.76703e93 −0.121016
\(556\) −4.06110e94 −0.800872
\(557\) 4.57947e94 0.848810 0.424405 0.905472i \(-0.360483\pi\)
0.424405 + 0.905472i \(0.360483\pi\)
\(558\) −2.26611e94 −0.394822
\(559\) 2.51658e94 0.412195
\(560\) 6.22652e94 0.958867
\(561\) 1.84422e94 0.267051
\(562\) −6.06659e94 −0.826117
\(563\) −7.69524e94 −0.985558 −0.492779 0.870154i \(-0.664019\pi\)
−0.492779 + 0.870154i \(0.664019\pi\)
\(564\) 7.33568e93 0.0883713
\(565\) 6.46059e94 0.732151
\(566\) 2.47259e95 2.63624
\(567\) −4.21935e94 −0.423282
\(568\) 2.32952e94 0.219912
\(569\) −2.74215e94 −0.243623 −0.121811 0.992553i \(-0.538870\pi\)
−0.121811 + 0.992553i \(0.538870\pi\)
\(570\) −6.27620e94 −0.524825
\(571\) −8.73385e94 −0.687480 −0.343740 0.939065i \(-0.611694\pi\)
−0.343740 + 0.939065i \(0.611694\pi\)
\(572\) 1.84807e94 0.136948
\(573\) 3.06379e94 0.213759
\(574\) −1.97520e95 −1.29763
\(575\) 8.12170e94 0.502465
\(576\) 1.03441e95 0.602720
\(577\) −1.84195e95 −1.01091 −0.505456 0.862852i \(-0.668676\pi\)
−0.505456 + 0.862852i \(0.668676\pi\)
\(578\) 4.14210e95 2.14146
\(579\) −1.14313e95 −0.556781
\(580\) −3.04193e95 −1.39599
\(581\) 2.15028e95 0.929862
\(582\) −1.58064e95 −0.644156
\(583\) −2.37739e94 −0.0913136
\(584\) −7.56399e94 −0.273847
\(585\) −8.25083e94 −0.281592
\(586\) 1.40764e95 0.452924
\(587\) −4.28656e95 −1.30045 −0.650226 0.759741i \(-0.725326\pi\)
−0.650226 + 0.759741i \(0.725326\pi\)
\(588\) −1.12207e94 −0.0320999
\(589\) 1.33393e95 0.359879
\(590\) 1.80206e95 0.458536
\(591\) 2.81255e95 0.675045
\(592\) −1.51735e95 −0.343547
\(593\) 1.24823e95 0.266629 0.133314 0.991074i \(-0.457438\pi\)
0.133314 + 0.991074i \(0.457438\pi\)
\(594\) 2.03475e95 0.410090
\(595\) 7.33624e95 1.39521
\(596\) 1.68767e95 0.302895
\(597\) 2.92897e95 0.496136
\(598\) −6.24356e95 −0.998255
\(599\) 1.05846e95 0.159752 0.0798761 0.996805i \(-0.474548\pi\)
0.0798761 + 0.996805i \(0.474548\pi\)
\(600\) −1.46303e94 −0.0208467
\(601\) 8.57967e95 1.15425 0.577127 0.816654i \(-0.304174\pi\)
0.577127 + 0.816654i \(0.304174\pi\)
\(602\) −1.08763e96 −1.38167
\(603\) −7.25609e95 −0.870474
\(604\) −1.17498e96 −1.33124
\(605\) −6.81964e95 −0.729796
\(606\) 4.16123e95 0.420645
\(607\) 4.90330e95 0.468250 0.234125 0.972206i \(-0.424777\pi\)
0.234125 + 0.972206i \(0.424777\pi\)
\(608\) −1.48342e96 −1.33842
\(609\) −1.05069e96 −0.895732
\(610\) 1.55927e96 1.25615
\(611\) −1.20676e95 −0.0918755
\(612\) 1.55481e96 1.11880
\(613\) 1.07997e96 0.734556 0.367278 0.930111i \(-0.380290\pi\)
0.367278 + 0.930111i \(0.380290\pi\)
\(614\) 1.42801e96 0.918171
\(615\) −5.79280e95 −0.352125
\(616\) 1.00499e95 0.0577601
\(617\) −6.04192e95 −0.328350 −0.164175 0.986431i \(-0.552496\pi\)
−0.164175 + 0.986431i \(0.552496\pi\)
\(618\) 1.38637e96 0.712486
\(619\) 2.55704e96 1.24283 0.621413 0.783483i \(-0.286559\pi\)
0.621413 + 0.783483i \(0.286559\pi\)
\(620\) 5.92161e95 0.272224
\(621\) −3.23369e96 −1.40617
\(622\) −3.20193e94 −0.0131717
\(623\) −2.70061e96 −1.05105
\(624\) 5.85853e95 0.215735
\(625\) −1.77602e96 −0.618852
\(626\) −3.07732e95 −0.101475
\(627\) −5.27670e95 −0.164677
\(628\) −1.60185e95 −0.0473166
\(629\) −1.78778e96 −0.499880
\(630\) 3.56591e96 0.943890
\(631\) 4.61934e96 1.15762 0.578812 0.815461i \(-0.303517\pi\)
0.578812 + 0.815461i \(0.303517\pi\)
\(632\) 7.11304e95 0.168778
\(633\) 2.06184e96 0.463261
\(634\) −9.17531e96 −1.95228
\(635\) −3.86292e96 −0.778435
\(636\) 5.40907e95 0.103241
\(637\) 1.84587e95 0.0333727
\(638\) −5.43679e96 −0.931171
\(639\) 6.94928e96 1.12761
\(640\) 1.66767e96 0.256391
\(641\) −4.05240e96 −0.590351 −0.295176 0.955443i \(-0.595378\pi\)
−0.295176 + 0.955443i \(0.595378\pi\)
\(642\) 5.01367e96 0.692145
\(643\) 6.21130e96 0.812650 0.406325 0.913729i \(-0.366810\pi\)
0.406325 + 0.913729i \(0.366810\pi\)
\(644\) 1.26934e97 1.57403
\(645\) −3.18978e96 −0.374930
\(646\) −1.94562e97 −2.16788
\(647\) 1.26722e97 1.33861 0.669305 0.742988i \(-0.266592\pi\)
0.669305 + 0.742988i \(0.266592\pi\)
\(648\) −6.25041e95 −0.0625995
\(649\) 1.51507e96 0.143877
\(650\) −1.91277e96 −0.172248
\(651\) 2.04534e96 0.174671
\(652\) 6.45393e96 0.522736
\(653\) 1.30200e97 1.00024 0.500121 0.865956i \(-0.333289\pi\)
0.500121 + 0.865956i \(0.333289\pi\)
\(654\) −4.33331e96 −0.315782
\(655\) −1.27001e97 −0.877978
\(656\) −1.52413e97 −0.999629
\(657\) −2.25644e97 −1.40417
\(658\) 5.21547e96 0.307964
\(659\) 2.36954e96 0.132776 0.0663878 0.997794i \(-0.478853\pi\)
0.0663878 + 0.997794i \(0.478853\pi\)
\(660\) −2.34244e96 −0.124567
\(661\) −3.01280e97 −1.52062 −0.760309 0.649561i \(-0.774953\pi\)
−0.760309 + 0.649561i \(0.774953\pi\)
\(662\) 9.80749e96 0.469848
\(663\) 6.90267e96 0.313906
\(664\) 3.18535e96 0.137518
\(665\) −2.09905e97 −0.860351
\(666\) −8.68980e96 −0.338181
\(667\) 8.64030e97 3.19292
\(668\) 2.84496e97 0.998364
\(669\) −6.81481e96 −0.227118
\(670\) 4.03078e97 1.27588
\(671\) 1.31095e97 0.394148
\(672\) −2.27456e97 −0.649616
\(673\) −2.89421e97 −0.785255 −0.392628 0.919698i \(-0.628434\pi\)
−0.392628 + 0.919698i \(0.628434\pi\)
\(674\) −3.29172e96 −0.0848508
\(675\) −9.90671e96 −0.242633
\(676\) −3.12501e97 −0.727261
\(677\) 2.23424e97 0.494106 0.247053 0.969002i \(-0.420538\pi\)
0.247053 + 0.969002i \(0.420538\pi\)
\(678\) −2.62717e97 −0.552158
\(679\) −5.28639e97 −1.05597
\(680\) 1.08677e97 0.206338
\(681\) 4.55409e96 0.0821913
\(682\) 1.05836e97 0.181582
\(683\) −4.84431e97 −0.790165 −0.395083 0.918646i \(-0.629284\pi\)
−0.395083 + 0.918646i \(0.629284\pi\)
\(684\) −4.44863e97 −0.689908
\(685\) 2.21292e97 0.326318
\(686\) 9.37874e97 1.31511
\(687\) 1.80525e97 0.240729
\(688\) −8.39253e97 −1.06437
\(689\) −8.89824e96 −0.107335
\(690\) 7.91375e97 0.908006
\(691\) −6.77284e96 −0.0739227 −0.0369614 0.999317i \(-0.511768\pi\)
−0.0369614 + 0.999317i \(0.511768\pi\)
\(692\) 4.57917e97 0.475474
\(693\) 2.99803e97 0.296169
\(694\) 7.23637e97 0.680173
\(695\) −8.46788e97 −0.757354
\(696\) −1.55646e97 −0.132470
\(697\) −1.79577e98 −1.45452
\(698\) 1.78705e97 0.137761
\(699\) 2.94574e97 0.216138
\(700\) 3.88873e97 0.271598
\(701\) 1.99785e98 1.32829 0.664144 0.747605i \(-0.268796\pi\)
0.664144 + 0.747605i \(0.268796\pi\)
\(702\) 7.61579e97 0.482042
\(703\) 5.11519e97 0.308250
\(704\) −4.83107e97 −0.277196
\(705\) 1.52958e97 0.0835694
\(706\) −1.70889e98 −0.889103
\(707\) 1.39170e98 0.689568
\(708\) −3.44712e97 −0.162670
\(709\) −2.67263e97 −0.120128 −0.0600640 0.998195i \(-0.519130\pi\)
−0.0600640 + 0.998195i \(0.519130\pi\)
\(710\) −3.86034e98 −1.65277
\(711\) 2.12192e98 0.865421
\(712\) −4.00059e97 −0.155440
\(713\) −1.68197e98 −0.622631
\(714\) −2.98325e98 −1.05221
\(715\) 3.85345e97 0.129506
\(716\) −2.95344e98 −0.945864
\(717\) 1.71398e97 0.0523113
\(718\) 1.63462e98 0.475470
\(719\) 7.00234e97 0.194132 0.0970659 0.995278i \(-0.469054\pi\)
0.0970659 + 0.995278i \(0.469054\pi\)
\(720\) 2.75157e98 0.727126
\(721\) 4.63665e98 1.16799
\(722\) −1.55365e97 −0.0373095
\(723\) 7.52986e97 0.172391
\(724\) 4.35646e98 0.950939
\(725\) 2.64704e98 0.550934
\(726\) 2.77318e98 0.550382
\(727\) −6.73415e98 −1.27452 −0.637259 0.770650i \(-0.719932\pi\)
−0.637259 + 0.770650i \(0.719932\pi\)
\(728\) 3.76154e97 0.0678943
\(729\) 3.42096e97 0.0588909
\(730\) 1.25346e99 2.05812
\(731\) −9.88829e98 −1.54872
\(732\) −2.98269e98 −0.445632
\(733\) −2.73438e98 −0.389737 −0.194868 0.980829i \(-0.562428\pi\)
−0.194868 + 0.980829i \(0.562428\pi\)
\(734\) −2.00116e99 −2.72125
\(735\) −2.33966e97 −0.0303556
\(736\) 1.87047e99 2.31562
\(737\) 3.38887e98 0.400338
\(738\) −8.72863e98 −0.984015
\(739\) −1.70145e99 −1.83057 −0.915286 0.402804i \(-0.868036\pi\)
−0.915286 + 0.402804i \(0.868036\pi\)
\(740\) 2.27074e98 0.233171
\(741\) −1.97499e98 −0.193570
\(742\) 3.84571e98 0.359784
\(743\) 1.16332e98 0.103893 0.0519465 0.998650i \(-0.483457\pi\)
0.0519465 + 0.998650i \(0.483457\pi\)
\(744\) 3.02989e97 0.0258322
\(745\) 3.51900e98 0.286436
\(746\) 1.18430e99 0.920390
\(747\) 9.50235e98 0.705132
\(748\) −7.26155e98 −0.514546
\(749\) 1.67680e99 1.13464
\(750\) 1.06583e99 0.688773
\(751\) 1.48592e98 0.0917099 0.0458550 0.998948i \(-0.485399\pi\)
0.0458550 + 0.998948i \(0.485399\pi\)
\(752\) 4.02443e98 0.237241
\(753\) −3.62946e98 −0.204369
\(754\) −2.03491e99 −1.09455
\(755\) −2.44997e99 −1.25890
\(756\) −1.54831e99 −0.760077
\(757\) 7.78263e98 0.365021 0.182511 0.983204i \(-0.441578\pi\)
0.182511 + 0.983204i \(0.441578\pi\)
\(758\) 7.44295e98 0.333548
\(759\) 6.65347e98 0.284910
\(760\) −3.10946e98 −0.127238
\(761\) 3.37753e99 1.32077 0.660387 0.750926i \(-0.270392\pi\)
0.660387 + 0.750926i \(0.270392\pi\)
\(762\) 1.57084e99 0.587064
\(763\) −1.44926e99 −0.517665
\(764\) −1.20636e99 −0.411865
\(765\) 3.24197e99 1.05801
\(766\) −4.15533e99 −1.29632
\(767\) 5.67070e98 0.169121
\(768\) −1.91563e99 −0.546197
\(769\) −4.43773e99 −1.20977 −0.604884 0.796313i \(-0.706781\pi\)
−0.604884 + 0.796313i \(0.706781\pi\)
\(770\) −1.66541e99 −0.434102
\(771\) −2.47531e99 −0.616955
\(772\) 4.50102e99 1.07279
\(773\) 4.82208e99 1.09911 0.549556 0.835457i \(-0.314797\pi\)
0.549556 + 0.835457i \(0.314797\pi\)
\(774\) −4.80638e99 −1.04774
\(775\) −5.15289e98 −0.107434
\(776\) −7.83108e98 −0.156168
\(777\) 7.84320e98 0.149613
\(778\) 1.84954e99 0.337494
\(779\) 5.13805e99 0.896925
\(780\) −8.76742e98 −0.146423
\(781\) −3.24557e99 −0.518598
\(782\) 2.45326e100 3.75069
\(783\) −1.05393e100 −1.54181
\(784\) −6.15581e98 −0.0861749
\(785\) −3.34005e98 −0.0447455
\(786\) 5.16445e99 0.662134
\(787\) 7.88562e99 0.967626 0.483813 0.875171i \(-0.339252\pi\)
0.483813 + 0.875171i \(0.339252\pi\)
\(788\) −1.10743e100 −1.30066
\(789\) 1.99719e99 0.224524
\(790\) −1.17873e100 −1.26847
\(791\) −8.78645e99 −0.905159
\(792\) 4.44118e98 0.0438005
\(793\) 4.90670e99 0.463303
\(794\) −1.51169e100 −1.36664
\(795\) 1.12786e99 0.0976311
\(796\) −1.15327e100 −0.955939
\(797\) −1.25803e100 −0.998568 −0.499284 0.866439i \(-0.666403\pi\)
−0.499284 + 0.866439i \(0.666403\pi\)
\(798\) 8.53568e99 0.648841
\(799\) 4.74169e99 0.345199
\(800\) 5.73037e99 0.399556
\(801\) −1.19343e100 −0.797031
\(802\) 2.87488e100 1.83909
\(803\) 1.05384e100 0.645787
\(804\) −7.71040e99 −0.452630
\(805\) 2.64672e100 1.48850
\(806\) 3.96129e99 0.213441
\(807\) 1.36483e100 0.704598
\(808\) 2.06162e99 0.101981
\(809\) −3.84669e100 −1.82332 −0.911660 0.410945i \(-0.865199\pi\)
−0.911660 + 0.410945i \(0.865199\pi\)
\(810\) 1.03578e100 0.470473
\(811\) −3.67612e100 −1.60018 −0.800092 0.599877i \(-0.795216\pi\)
−0.800092 + 0.599877i \(0.795216\pi\)
\(812\) 4.13705e100 1.72587
\(813\) −4.68183e99 −0.187194
\(814\) 4.05846e99 0.155532
\(815\) 1.34572e100 0.494332
\(816\) −2.30197e100 −0.810568
\(817\) 2.82924e100 0.955013
\(818\) −7.23159e100 −2.34015
\(819\) 1.12212e100 0.348132
\(820\) 2.28089e100 0.678464
\(821\) −2.26554e100 −0.646150 −0.323075 0.946373i \(-0.604717\pi\)
−0.323075 + 0.946373i \(0.604717\pi\)
\(822\) −8.99872e99 −0.246095
\(823\) −9.10937e99 −0.238888 −0.119444 0.992841i \(-0.538111\pi\)
−0.119444 + 0.992841i \(0.538111\pi\)
\(824\) 6.86858e99 0.172734
\(825\) 2.03835e99 0.0491607
\(826\) −2.45081e100 −0.566889
\(827\) 6.95998e100 1.54407 0.772036 0.635579i \(-0.219238\pi\)
0.772036 + 0.635579i \(0.219238\pi\)
\(828\) 5.60935e100 1.19362
\(829\) −8.75117e100 −1.78622 −0.893110 0.449839i \(-0.851481\pi\)
−0.893110 + 0.449839i \(0.851481\pi\)
\(830\) −5.27858e100 −1.03353
\(831\) 2.82011e100 0.529701
\(832\) −1.80820e100 −0.325830
\(833\) −7.25293e99 −0.125389
\(834\) 3.44342e100 0.571165
\(835\) 5.93210e100 0.944115
\(836\) 2.07768e100 0.317294
\(837\) 2.05164e100 0.300659
\(838\) −1.42379e101 −2.00228
\(839\) −2.45769e100 −0.331695 −0.165848 0.986151i \(-0.553036\pi\)
−0.165848 + 0.986151i \(0.553036\pi\)
\(840\) −4.76778e99 −0.0617562
\(841\) 2.01168e101 2.50091
\(842\) 7.17621e100 0.856305
\(843\) 2.41971e100 0.277148
\(844\) −8.11839e100 −0.892598
\(845\) −6.51602e100 −0.687743
\(846\) 2.30478e100 0.233535
\(847\) 9.27477e100 0.902247
\(848\) 2.96748e100 0.277160
\(849\) −9.86215e100 −0.884416
\(850\) 7.51580e100 0.647176
\(851\) −6.44983e100 −0.533308
\(852\) 7.38437e100 0.586337
\(853\) −2.04726e101 −1.56110 −0.780552 0.625090i \(-0.785062\pi\)
−0.780552 + 0.625090i \(0.785062\pi\)
\(854\) −2.12062e101 −1.55298
\(855\) −9.27594e100 −0.652420
\(856\) 2.48395e100 0.167803
\(857\) −2.37001e101 −1.53784 −0.768922 0.639342i \(-0.779207\pi\)
−0.768922 + 0.639342i \(0.779207\pi\)
\(858\) −1.56699e100 −0.0976683
\(859\) 4.04034e99 0.0241910 0.0120955 0.999927i \(-0.496150\pi\)
0.0120955 + 0.999927i \(0.496150\pi\)
\(860\) 1.25596e101 0.722403
\(861\) 7.87825e100 0.435332
\(862\) 4.45051e101 2.36271
\(863\) 1.44294e101 0.735998 0.367999 0.929826i \(-0.380043\pi\)
0.367999 + 0.929826i \(0.380043\pi\)
\(864\) −2.28157e101 −1.11817
\(865\) 9.54812e100 0.449637
\(866\) 5.04555e101 2.28319
\(867\) −1.65211e101 −0.718424
\(868\) −8.05343e100 −0.336551
\(869\) −9.91016e100 −0.398014
\(870\) 2.57927e101 0.995593
\(871\) 1.26840e101 0.470578
\(872\) −2.14688e100 −0.0765577
\(873\) −2.33612e101 −0.800763
\(874\) −7.01928e101 −2.31285
\(875\) 3.56464e101 1.12911
\(876\) −2.39772e101 −0.730140
\(877\) 1.03367e101 0.302618 0.151309 0.988486i \(-0.451651\pi\)
0.151309 + 0.988486i \(0.451651\pi\)
\(878\) 8.84284e100 0.248904
\(879\) −5.61452e100 −0.151948
\(880\) −1.28509e101 −0.334411
\(881\) −1.84554e100 −0.0461801 −0.0230900 0.999733i \(-0.507350\pi\)
−0.0230900 + 0.999733i \(0.507350\pi\)
\(882\) −3.52541e100 −0.0848289
\(883\) 2.67901e100 0.0619911 0.0309956 0.999520i \(-0.490132\pi\)
0.0309956 + 0.999520i \(0.490132\pi\)
\(884\) −2.71790e101 −0.604825
\(885\) −7.18766e100 −0.153831
\(886\) −7.66221e101 −1.57721
\(887\) 5.27008e101 1.04340 0.521701 0.853128i \(-0.325297\pi\)
0.521701 + 0.853128i \(0.325297\pi\)
\(888\) 1.16187e100 0.0221263
\(889\) 5.25360e101 0.962380
\(890\) 6.62954e101 1.16823
\(891\) 8.70830e100 0.147622
\(892\) 2.68330e101 0.437605
\(893\) −1.35669e101 −0.212866
\(894\) −1.43099e101 −0.216019
\(895\) −6.15828e101 −0.894467
\(896\) −2.26805e101 −0.316976
\(897\) 2.49030e101 0.334898
\(898\) 8.13644e100 0.105293
\(899\) −5.48193e101 −0.682690
\(900\) 1.71848e101 0.205957
\(901\) 3.49635e101 0.403283
\(902\) 4.07660e101 0.452556
\(903\) 4.33812e101 0.463526
\(904\) −1.30160e101 −0.133864
\(905\) 9.08374e101 0.899267
\(906\) 9.96270e101 0.949411
\(907\) −1.42836e102 −1.31035 −0.655173 0.755479i \(-0.727404\pi\)
−0.655173 + 0.755479i \(0.727404\pi\)
\(908\) −1.79315e101 −0.158364
\(909\) 6.15011e101 0.522912
\(910\) −6.23340e101 −0.510267
\(911\) −1.37535e102 −1.08400 −0.542000 0.840378i \(-0.682333\pi\)
−0.542000 + 0.840378i \(0.682333\pi\)
\(912\) 6.58641e101 0.499835
\(913\) −4.43795e101 −0.324295
\(914\) −5.09695e101 −0.358646
\(915\) −6.21928e101 −0.421417
\(916\) −7.10809e101 −0.463830
\(917\) 1.72723e102 1.08544
\(918\) −2.99245e102 −1.81115
\(919\) −2.81280e101 −0.163966 −0.0819829 0.996634i \(-0.526125\pi\)
−0.0819829 + 0.996634i \(0.526125\pi\)
\(920\) 3.92076e101 0.220136
\(921\) −5.69576e101 −0.308031
\(922\) 2.79932e102 1.45826
\(923\) −1.21477e102 −0.609587
\(924\) 3.18573e101 0.154002
\(925\) −1.97597e101 −0.0920216
\(926\) −1.52049e102 −0.682188
\(927\) 2.04899e102 0.885705
\(928\) 6.09628e102 2.53898
\(929\) 6.85921e101 0.275253 0.137626 0.990484i \(-0.456053\pi\)
0.137626 + 0.990484i \(0.456053\pi\)
\(930\) −5.02096e101 −0.194144
\(931\) 2.07521e101 0.0773211
\(932\) −1.15987e102 −0.416449
\(933\) 1.27712e100 0.00441890
\(934\) 2.78289e102 0.927958
\(935\) −1.51412e102 −0.486587
\(936\) 1.66227e101 0.0514855
\(937\) 4.17633e102 1.24675 0.623375 0.781923i \(-0.285761\pi\)
0.623375 + 0.781923i \(0.285761\pi\)
\(938\) −5.48189e102 −1.57737
\(939\) 1.22742e101 0.0340431
\(940\) −6.02265e101 −0.161019
\(941\) −6.90927e102 −1.78070 −0.890349 0.455280i \(-0.849539\pi\)
−0.890349 + 0.455280i \(0.849539\pi\)
\(942\) 1.35821e101 0.0337452
\(943\) −6.47865e102 −1.55178
\(944\) −1.89112e102 −0.436703
\(945\) −3.22842e102 −0.718776
\(946\) 2.24476e102 0.481865
\(947\) 2.68653e102 0.556055 0.278028 0.960573i \(-0.410319\pi\)
0.278028 + 0.960573i \(0.410319\pi\)
\(948\) 2.25477e102 0.450003
\(949\) 3.94438e102 0.759093
\(950\) −2.15042e102 −0.399080
\(951\) 3.65965e102 0.654956
\(952\) −1.47801e102 −0.255095
\(953\) 1.09155e103 1.81694 0.908470 0.417950i \(-0.137251\pi\)
0.908470 + 0.417950i \(0.137251\pi\)
\(954\) 1.69946e102 0.272831
\(955\) −2.51540e102 −0.389485
\(956\) −6.74874e101 −0.100792
\(957\) 2.16851e102 0.312392
\(958\) −1.23667e102 −0.171847
\(959\) −3.00958e102 −0.403426
\(960\) 2.29191e102 0.296373
\(961\) −6.94884e102 −0.866873
\(962\) 1.51902e102 0.182821
\(963\) 7.40998e102 0.860419
\(964\) −2.96485e102 −0.332158
\(965\) 9.38518e102 1.01450
\(966\) −1.07628e103 −1.12257
\(967\) −1.75819e103 −1.76950 −0.884751 0.466063i \(-0.845672\pi\)
−0.884751 + 0.466063i \(0.845672\pi\)
\(968\) 1.37393e102 0.133434
\(969\) 7.76027e102 0.727289
\(970\) 1.29772e103 1.17370
\(971\) 6.68592e102 0.583576 0.291788 0.956483i \(-0.405750\pi\)
0.291788 + 0.956483i \(0.405750\pi\)
\(972\) −1.06700e103 −0.898834
\(973\) 1.15164e103 0.936317
\(974\) 7.94430e101 0.0623407
\(975\) 7.62927e101 0.0577862
\(976\) −1.63634e103 −1.19634
\(977\) −9.63413e102 −0.679908 −0.339954 0.940442i \(-0.610411\pi\)
−0.339954 + 0.940442i \(0.610411\pi\)
\(978\) −5.47232e102 −0.372804
\(979\) 5.57377e102 0.366561
\(980\) 9.21230e101 0.0584882
\(981\) −6.40444e102 −0.392555
\(982\) −3.22890e103 −1.91077
\(983\) 5.82748e102 0.332954 0.166477 0.986045i \(-0.446761\pi\)
0.166477 + 0.986045i \(0.446761\pi\)
\(984\) 1.16706e102 0.0643815
\(985\) −2.30913e103 −1.22998
\(986\) 7.99572e103 4.11248
\(987\) −2.08024e102 −0.103317
\(988\) 7.77646e102 0.372964
\(989\) −3.56743e103 −1.65228
\(990\) −7.35966e102 −0.329187
\(991\) 2.95358e103 1.27587 0.637936 0.770090i \(-0.279789\pi\)
0.637936 + 0.770090i \(0.279789\pi\)
\(992\) −1.18674e103 −0.495111
\(993\) −3.91180e102 −0.157626
\(994\) 5.25009e103 2.04332
\(995\) −2.40471e103 −0.903995
\(996\) 1.00973e103 0.366655
\(997\) 1.27987e103 0.448933 0.224467 0.974482i \(-0.427936\pi\)
0.224467 + 0.974482i \(0.427936\pi\)
\(998\) 1.59001e103 0.538763
\(999\) 7.86739e102 0.257526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))