Properties

Label 1.70.a.a.1.3
Level 1
Weight 70
Character 1.1
Self dual Yes
Analytic conductor 30.151
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 70 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(30.1514953292\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{17}\cdot 5^{5}\cdot 7^{2}\cdot 17\cdot 23 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.08482e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(-6.72544e9 q^{2}\) \(-4.13926e16 q^{3}\) \(-5.45064e20 q^{4}\) \(-6.57446e23 q^{5}\) \(+2.78383e26 q^{6}\) \(+1.09182e29 q^{7}\) \(+7.63579e30 q^{8}\) \(+8.78961e32 q^{9}\) \(+O(q^{10})\) \(q\)\(-6.72544e9 q^{2}\) \(-4.13926e16 q^{3}\) \(-5.45064e20 q^{4}\) \(-6.57446e23 q^{5}\) \(+2.78383e26 q^{6}\) \(+1.09182e29 q^{7}\) \(+7.63579e30 q^{8}\) \(+8.78961e32 q^{9}\) \(+4.42161e33 q^{10}\) \(+1.33172e36 q^{11}\) \(+2.25616e37 q^{12}\) \(-4.12780e38 q^{13}\) \(-7.34294e38 q^{14}\) \(+2.72134e40 q^{15}\) \(+2.70395e41 q^{16}\) \(-6.74158e41 q^{17}\) \(-5.91140e42 q^{18}\) \(+4.81748e43 q^{19}\) \(+3.58350e44 q^{20}\) \(-4.51931e45 q^{21}\) \(-8.95643e45 q^{22}\) \(+1.69186e47 q^{23}\) \(-3.16065e47 q^{24}\) \(-1.26183e48 q^{25}\) \(+2.77612e48 q^{26}\) \(-1.84511e48 q^{27}\) \(-5.95110e49 q^{28}\) \(-1.58578e50 q^{29}\) \(-1.83022e50 q^{30}\) \(-2.69817e51 q^{31}\) \(-6.32590e51 q^{32}\) \(-5.51235e52 q^{33}\) \(+4.53401e51 q^{34}\) \(-7.17810e52 q^{35}\) \(-4.79090e53 q^{36}\) \(-8.15325e53 q^{37}\) \(-3.23996e53 q^{38}\) \(+1.70860e55 q^{39}\) \(-5.02012e54 q^{40}\) \(+2.61880e55 q^{41}\) \(+3.03943e55 q^{42}\) \(+4.10933e56 q^{43}\) \(-7.25876e56 q^{44}\) \(-5.77869e56 q^{45}\) \(-1.13785e57 q^{46}\) \(+9.62235e56 q^{47}\) \(-1.11924e58 q^{48}\) \(-8.57990e57 q^{49}\) \(+8.48636e57 q^{50}\) \(+2.79051e58 q^{51}\) \(+2.24991e59 q^{52}\) \(+1.75042e59 q^{53}\) \(+1.24092e58 q^{54}\) \(-8.75537e59 q^{55}\) \(+8.33688e59 q^{56}\) \(-1.99408e60 q^{57}\) \(+1.06651e60 q^{58}\) \(-1.91926e61 q^{59}\) \(-1.48330e61 q^{60}\) \(+5.14748e61 q^{61}\) \(+1.81464e61 q^{62}\) \(+9.59664e61 q^{63}\) \(-1.17069e62 q^{64}\) \(+2.71380e62 q^{65}\) \(+3.70730e62 q^{66}\) \(-5.82869e62 q^{67}\) \(+3.67459e62 q^{68}\) \(-7.00305e63 q^{69}\) \(+4.82758e62 q^{70}\) \(+6.68198e63 q^{71}\) \(+6.71156e63 q^{72}\) \(-1.20455e64 q^{73}\) \(+5.48341e63 q^{74}\) \(+5.22304e64 q^{75}\) \(-2.62583e64 q^{76}\) \(+1.45400e65 q^{77}\) \(-1.14911e65 q^{78}\) \(-1.97073e65 q^{79}\) \(-1.77770e65 q^{80}\) \(-6.57018e65 q^{81}\) \(-1.76126e65 q^{82}\) \(+5.46209e65 q^{83}\) \(+2.46331e66 q^{84}\) \(+4.43222e65 q^{85}\) \(-2.76370e66 q^{86}\) \(+6.56395e66 q^{87}\) \(+1.01688e67 q^{88}\) \(-8.41635e66 q^{89}\) \(+3.88642e66 q^{90}\) \(-4.50679e67 q^{91}\) \(-9.22174e67 q^{92}\) \(+1.11684e68 q^{93}\) \(-6.47145e66 q^{94}\) \(-3.16723e67 q^{95}\) \(+2.61845e68 q^{96}\) \(-3.94984e68 q^{97}\) \(+5.77035e67 q^{98}\) \(+1.17053e69 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(5q \) \(\mathstrut -\mathstrut 18005734368q^{2} \) \(\mathstrut -\mathstrut 4858082326815804q^{3} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!60\)\(q^{4} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(65\!\cdots\!60\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(76\!\cdots\!92\)\(q^{7} \) \(\mathstrut -\mathstrut \)\(45\!\cdots\!00\)\(q^{8} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!35\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(5q \) \(\mathstrut -\mathstrut 18005734368q^{2} \) \(\mathstrut -\mathstrut 4858082326815804q^{3} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!60\)\(q^{4} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(65\!\cdots\!60\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(76\!\cdots\!92\)\(q^{7} \) \(\mathstrut -\mathstrut \)\(45\!\cdots\!00\)\(q^{8} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!35\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!40\)\(q^{11} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!48\)\(q^{12} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!86\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!20\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!00\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(95\!\cdots\!80\)\(q^{16} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!38\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!56\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!00\)\(q^{19} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!00\)\(q^{20} \) \(\mathstrut +\mathstrut \)\(30\!\cdots\!60\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!56\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(49\!\cdots\!76\)\(q^{23} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{24} \) \(\mathstrut +\mathstrut \)\(46\!\cdots\!75\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!40\)\(q^{26} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!00\)\(q^{27} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!96\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(62\!\cdots\!50\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{30} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!40\)\(q^{31} \) \(\mathstrut -\mathstrut \)\(59\!\cdots\!08\)\(q^{32} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!68\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(74\!\cdots\!00\)\(q^{35} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!20\)\(q^{36} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!02\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!00\)\(q^{38} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!80\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!10\)\(q^{41} \) \(\mathstrut +\mathstrut \)\(29\!\cdots\!24\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!56\)\(q^{43} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!80\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!50\)\(q^{45} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!40\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!28\)\(q^{47} \) \(\mathstrut -\mathstrut \)\(32\!\cdots\!24\)\(q^{48} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!15\)\(q^{49} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!00\)\(q^{50} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!60\)\(q^{51} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!32\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!46\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!00\)\(q^{54} \) \(\mathstrut +\mathstrut \)\(90\!\cdots\!00\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{56} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!00\)\(q^{57} \) \(\mathstrut -\mathstrut \)\(21\!\cdots\!00\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{59} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!10\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!04\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(32\!\cdots\!36\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!60\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(32\!\cdots\!00\)\(q^{65} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!80\)\(q^{66} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!88\)\(q^{67} \) \(\mathstrut -\mathstrut \)\(42\!\cdots\!56\)\(q^{68} \) \(\mathstrut -\mathstrut \)\(68\!\cdots\!20\)\(q^{69} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!00\)\(q^{70} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!40\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!00\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!26\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!20\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!00\)\(q^{76} \) \(\mathstrut -\mathstrut \)\(68\!\cdots\!36\)\(q^{77} \) \(\mathstrut -\mathstrut \)\(57\!\cdots\!08\)\(q^{78} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!00\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!95\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(93\!\cdots\!16\)\(q^{82} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!16\)\(q^{83} \) \(\mathstrut +\mathstrut \)\(29\!\cdots\!20\)\(q^{84} \) \(\mathstrut +\mathstrut \)\(74\!\cdots\!00\)\(q^{85} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!60\)\(q^{86} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!00\)\(q^{87} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{89} \) \(\mathstrut -\mathstrut \)\(85\!\cdots\!00\)\(q^{90} \) \(\mathstrut -\mathstrut \)\(80\!\cdots\!40\)\(q^{91} \) \(\mathstrut -\mathstrut \)\(21\!\cdots\!88\)\(q^{92} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!88\)\(q^{93} \) \(\mathstrut -\mathstrut \)\(32\!\cdots\!80\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(78\!\cdots\!60\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!22\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(17\!\cdots\!24\)\(q^{98} \) \(\mathstrut +\mathstrut \)\(58\!\cdots\!80\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.72544e9 −0.276812 −0.138406 0.990376i \(-0.544198\pi\)
−0.138406 + 0.990376i \(0.544198\pi\)
\(3\) −4.13926e16 −1.43298 −0.716489 0.697599i \(-0.754252\pi\)
−0.716489 + 0.697599i \(0.754252\pi\)
\(4\) −5.45064e20 −0.923375
\(5\) −6.57446e23 −0.505120 −0.252560 0.967581i \(-0.581273\pi\)
−0.252560 + 0.967581i \(0.581273\pi\)
\(6\) 2.78383e26 0.396666
\(7\) 1.09182e29 0.762548 0.381274 0.924462i \(-0.375485\pi\)
0.381274 + 0.924462i \(0.375485\pi\)
\(8\) 7.63579e30 0.532414
\(9\) 8.78961e32 1.05342
\(10\) 4.42161e33 0.139824
\(11\) 1.33172e36 1.57169 0.785845 0.618424i \(-0.212228\pi\)
0.785845 + 0.618424i \(0.212228\pi\)
\(12\) 2.25616e37 1.32318
\(13\) −4.12780e38 −1.52993 −0.764967 0.644069i \(-0.777245\pi\)
−0.764967 + 0.644069i \(0.777245\pi\)
\(14\) −7.34294e38 −0.211083
\(15\) 2.72134e40 0.723826
\(16\) 2.70395e41 0.775996
\(17\) −6.74158e41 −0.238932 −0.119466 0.992838i \(-0.538118\pi\)
−0.119466 + 0.992838i \(0.538118\pi\)
\(18\) −5.91140e42 −0.291601
\(19\) 4.81748e43 0.367977 0.183988 0.982928i \(-0.441099\pi\)
0.183988 + 0.982928i \(0.441099\pi\)
\(20\) 3.58350e44 0.466416
\(21\) −4.51931e45 −1.09271
\(22\) −8.95643e45 −0.435063
\(23\) 1.69186e47 1.77319 0.886594 0.462549i \(-0.153065\pi\)
0.886594 + 0.462549i \(0.153065\pi\)
\(24\) −3.16065e47 −0.762937
\(25\) −1.26183e48 −0.744853
\(26\) 2.77612e48 0.423505
\(27\) −1.84511e48 −0.0765548
\(28\) −5.95110e49 −0.704117
\(29\) −1.58578e50 −0.559128 −0.279564 0.960127i \(-0.590190\pi\)
−0.279564 + 0.960127i \(0.590190\pi\)
\(30\) −1.83022e50 −0.200364
\(31\) −2.69817e51 −0.952996 −0.476498 0.879176i \(-0.658094\pi\)
−0.476498 + 0.879176i \(0.658094\pi\)
\(32\) −6.32590e51 −0.747219
\(33\) −5.51235e52 −2.25220
\(34\) 4.53401e51 0.0661393
\(35\) −7.17810e52 −0.385178
\(36\) −4.79090e53 −0.972705
\(37\) −8.15325e53 −0.643237 −0.321619 0.946869i \(-0.604227\pi\)
−0.321619 + 0.946869i \(0.604227\pi\)
\(38\) −3.23996e53 −0.101861
\(39\) 1.70860e55 2.19236
\(40\) −5.02012e54 −0.268933
\(41\) 2.61880e55 0.598493 0.299246 0.954176i \(-0.403265\pi\)
0.299246 + 0.954176i \(0.403265\pi\)
\(42\) 3.03943e55 0.302477
\(43\) 4.10933e56 1.81597 0.907986 0.419001i \(-0.137620\pi\)
0.907986 + 0.419001i \(0.137620\pi\)
\(44\) −7.25876e56 −1.45126
\(45\) −5.77869e56 −0.532106
\(46\) −1.13785e57 −0.490840
\(47\) 9.62235e56 0.197654 0.0988269 0.995105i \(-0.468491\pi\)
0.0988269 + 0.995105i \(0.468491\pi\)
\(48\) −1.11924e58 −1.11198
\(49\) −8.57990e57 −0.418521
\(50\) 8.48636e57 0.206185
\(51\) 2.79051e58 0.342384
\(52\) 2.24991e59 1.41270
\(53\) 1.75042e59 0.569672 0.284836 0.958576i \(-0.408061\pi\)
0.284836 + 0.958576i \(0.408061\pi\)
\(54\) 1.24092e58 0.0211913
\(55\) −8.75537e59 −0.793893
\(56\) 8.33688e59 0.405991
\(57\) −1.99408e60 −0.527302
\(58\) 1.06651e60 0.154774
\(59\) −1.91926e61 −1.54433 −0.772163 0.635425i \(-0.780825\pi\)
−0.772163 + 0.635425i \(0.780825\pi\)
\(60\) −1.48330e61 −0.668363
\(61\) 5.14748e61 1.31134 0.655670 0.755048i \(-0.272386\pi\)
0.655670 + 0.755048i \(0.272386\pi\)
\(62\) 1.81464e61 0.263801
\(63\) 9.59664e61 0.803286
\(64\) −1.17069e62 −0.569156
\(65\) 2.71380e62 0.772801
\(66\) 3.70730e62 0.623436
\(67\) −5.82869e62 −0.583432 −0.291716 0.956505i \(-0.594226\pi\)
−0.291716 + 0.956505i \(0.594226\pi\)
\(68\) 3.67459e62 0.220624
\(69\) −7.00305e63 −2.54094
\(70\) 4.82758e62 0.106622
\(71\) 6.68198e63 0.904675 0.452337 0.891847i \(-0.350590\pi\)
0.452337 + 0.891847i \(0.350590\pi\)
\(72\) 6.71156e63 0.560858
\(73\) −1.20455e64 −0.625441 −0.312720 0.949845i \(-0.601240\pi\)
−0.312720 + 0.949845i \(0.601240\pi\)
\(74\) 5.48341e63 0.178056
\(75\) 5.22304e64 1.06736
\(76\) −2.62583e64 −0.339780
\(77\) 1.45400e65 1.19849
\(78\) −1.14911e65 −0.606873
\(79\) −1.97073e65 −0.670643 −0.335322 0.942104i \(-0.608845\pi\)
−0.335322 + 0.942104i \(0.608845\pi\)
\(80\) −1.77770e65 −0.391971
\(81\) −6.57018e65 −0.943722
\(82\) −1.76126e65 −0.165670
\(83\) 5.46209e65 0.338193 0.169097 0.985599i \(-0.445915\pi\)
0.169097 + 0.985599i \(0.445915\pi\)
\(84\) 2.46331e66 1.00898
\(85\) 4.43222e65 0.120689
\(86\) −2.76370e66 −0.502684
\(87\) 6.56395e66 0.801218
\(88\) 1.01688e67 0.836790
\(89\) −8.41635e66 −0.468995 −0.234498 0.972117i \(-0.575345\pi\)
−0.234498 + 0.972117i \(0.575345\pi\)
\(90\) 3.88642e66 0.147293
\(91\) −4.50679e67 −1.16665
\(92\) −9.22174e67 −1.63732
\(93\) 1.11684e68 1.36562
\(94\) −6.47145e66 −0.0547130
\(95\) −3.16723e67 −0.185873
\(96\) 2.61845e68 1.07075
\(97\) −3.94984e68 −1.12968 −0.564840 0.825201i \(-0.691062\pi\)
−0.564840 + 0.825201i \(0.691062\pi\)
\(98\) 5.77035e67 0.115852
\(99\) 1.17053e69 1.65565
\(100\) 6.87779e68 0.687779
\(101\) −1.06893e69 −0.758338 −0.379169 0.925327i \(-0.623790\pi\)
−0.379169 + 0.925327i \(0.623790\pi\)
\(102\) −1.87674e68 −0.0947761
\(103\) −3.99860e69 −1.44219 −0.721097 0.692834i \(-0.756362\pi\)
−0.721097 + 0.692834i \(0.756362\pi\)
\(104\) −3.15190e69 −0.814558
\(105\) 2.97120e69 0.551952
\(106\) −1.17723e69 −0.157692
\(107\) 9.26493e69 0.897639 0.448820 0.893622i \(-0.351845\pi\)
0.448820 + 0.893622i \(0.351845\pi\)
\(108\) 1.00570e69 0.0706888
\(109\) −6.11339e69 −0.312657 −0.156328 0.987705i \(-0.549966\pi\)
−0.156328 + 0.987705i \(0.549966\pi\)
\(110\) 5.88837e69 0.219759
\(111\) 3.37484e70 0.921744
\(112\) 2.95222e70 0.591734
\(113\) −6.06342e70 −0.894358 −0.447179 0.894444i \(-0.647571\pi\)
−0.447179 + 0.894444i \(0.647571\pi\)
\(114\) 1.34110e70 0.145964
\(115\) −1.11231e71 −0.895673
\(116\) 8.64351e70 0.516285
\(117\) −3.62817e71 −1.61167
\(118\) 1.29078e71 0.427488
\(119\) −7.36056e70 −0.182197
\(120\) 2.07796e71 0.385375
\(121\) 1.05554e72 1.47021
\(122\) −3.46190e71 −0.362995
\(123\) −1.08399e72 −0.857627
\(124\) 1.47068e72 0.879972
\(125\) 1.94334e72 0.881361
\(126\) −6.45416e71 −0.222359
\(127\) −2.77881e72 −0.728836 −0.364418 0.931235i \(-0.618732\pi\)
−0.364418 + 0.931235i \(0.618732\pi\)
\(128\) 4.52149e72 0.904769
\(129\) −1.70096e73 −2.60225
\(130\) −1.82515e72 −0.213921
\(131\) −6.62064e72 −0.595718 −0.297859 0.954610i \(-0.596272\pi\)
−0.297859 + 0.954610i \(0.596272\pi\)
\(132\) 3.00459e73 2.07962
\(133\) 5.25980e72 0.280600
\(134\) 3.92005e72 0.161501
\(135\) 1.21306e72 0.0386694
\(136\) −5.14773e72 −0.127211
\(137\) −1.46579e73 −0.281327 −0.140663 0.990057i \(-0.544924\pi\)
−0.140663 + 0.990057i \(0.544924\pi\)
\(138\) 4.70986e73 0.703363
\(139\) −1.11987e73 −0.130364 −0.0651818 0.997873i \(-0.520763\pi\)
−0.0651818 + 0.997873i \(0.520763\pi\)
\(140\) 3.91253e73 0.355664
\(141\) −3.98294e73 −0.283233
\(142\) −4.49393e73 −0.250425
\(143\) −5.49709e74 −2.40458
\(144\) 2.37667e74 0.817453
\(145\) 1.04256e74 0.282427
\(146\) 8.10112e73 0.173130
\(147\) 3.55144e74 0.599731
\(148\) 4.44404e74 0.593949
\(149\) 1.93136e74 0.204615 0.102308 0.994753i \(-0.467377\pi\)
0.102308 + 0.994753i \(0.467377\pi\)
\(150\) −3.51272e74 −0.295458
\(151\) 4.68967e74 0.313644 0.156822 0.987627i \(-0.449875\pi\)
0.156822 + 0.987627i \(0.449875\pi\)
\(152\) 3.67852e74 0.195916
\(153\) −5.92559e74 −0.251696
\(154\) −9.77877e74 −0.331756
\(155\) 1.77390e75 0.481378
\(156\) −9.31298e75 −2.02437
\(157\) 2.27330e75 0.396387 0.198193 0.980163i \(-0.436493\pi\)
0.198193 + 0.980163i \(0.436493\pi\)
\(158\) 1.32540e75 0.185642
\(159\) −7.24544e75 −0.816327
\(160\) 4.15894e75 0.377436
\(161\) 1.84720e76 1.35214
\(162\) 4.41873e75 0.261234
\(163\) 7.08855e75 0.338911 0.169455 0.985538i \(-0.445799\pi\)
0.169455 + 0.985538i \(0.445799\pi\)
\(164\) −1.42741e76 −0.552633
\(165\) 3.62407e76 1.13763
\(166\) −3.67349e75 −0.0936160
\(167\) −8.63978e76 −1.78972 −0.894859 0.446349i \(-0.852724\pi\)
−0.894859 + 0.446349i \(0.852724\pi\)
\(168\) −3.45085e76 −0.581776
\(169\) 9.75938e76 1.34070
\(170\) −2.98086e75 −0.0334083
\(171\) 4.23437e76 0.387635
\(172\) −2.23985e77 −1.67682
\(173\) −7.56106e75 −0.0463439 −0.0231719 0.999731i \(-0.507377\pi\)
−0.0231719 + 0.999731i \(0.507377\pi\)
\(174\) −4.41454e76 −0.221787
\(175\) −1.37769e77 −0.567986
\(176\) 3.60092e77 1.21963
\(177\) 7.94430e77 2.21298
\(178\) 5.66036e76 0.129824
\(179\) −4.74532e77 −0.897091 −0.448545 0.893760i \(-0.648058\pi\)
−0.448545 + 0.893760i \(0.648058\pi\)
\(180\) 3.14976e77 0.491333
\(181\) −7.62895e77 −0.983000 −0.491500 0.870877i \(-0.663551\pi\)
−0.491500 + 0.870877i \(0.663551\pi\)
\(182\) 3.03102e77 0.322943
\(183\) −2.13067e78 −1.87912
\(184\) 1.29187e78 0.944070
\(185\) 5.36032e77 0.324912
\(186\) −7.51125e77 −0.378021
\(187\) −8.97793e77 −0.375527
\(188\) −5.24480e77 −0.182508
\(189\) −2.01452e77 −0.0583767
\(190\) 2.13010e77 0.0514518
\(191\) 3.26226e78 0.657458 0.328729 0.944424i \(-0.393380\pi\)
0.328729 + 0.944424i \(0.393380\pi\)
\(192\) 4.84578e78 0.815588
\(193\) 5.00103e78 0.703611 0.351805 0.936073i \(-0.385568\pi\)
0.351805 + 0.936073i \(0.385568\pi\)
\(194\) 2.65644e78 0.312709
\(195\) −1.12331e79 −1.10741
\(196\) 4.67659e78 0.386452
\(197\) −6.39535e78 −0.443383 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(198\) −7.87235e78 −0.458306
\(199\) −1.38753e79 −0.678909 −0.339455 0.940622i \(-0.610242\pi\)
−0.339455 + 0.940622i \(0.610242\pi\)
\(200\) −9.63508e78 −0.396570
\(201\) 2.41264e79 0.836044
\(202\) 7.18904e78 0.209917
\(203\) −1.73138e79 −0.426362
\(204\) −1.52101e79 −0.316149
\(205\) −1.72172e79 −0.302311
\(206\) 2.68923e79 0.399217
\(207\) 1.48708e80 1.86792
\(208\) −1.11614e80 −1.18722
\(209\) 6.41555e79 0.578345
\(210\) −1.99826e79 −0.152787
\(211\) 2.63566e80 1.71059 0.855294 0.518143i \(-0.173376\pi\)
0.855294 + 0.518143i \(0.173376\pi\)
\(212\) −9.54091e79 −0.526021
\(213\) −2.76585e80 −1.29638
\(214\) −6.23107e79 −0.248478
\(215\) −2.70166e80 −0.917284
\(216\) −1.40889e79 −0.0407588
\(217\) −2.94591e80 −0.726705
\(218\) 4.11152e79 0.0865473
\(219\) 4.98594e80 0.896242
\(220\) 4.77224e80 0.733060
\(221\) 2.78279e80 0.365550
\(222\) −2.26973e80 −0.255150
\(223\) 8.25684e80 0.794870 0.397435 0.917630i \(-0.369900\pi\)
0.397435 + 0.917630i \(0.369900\pi\)
\(224\) −6.90672e80 −0.569790
\(225\) −1.10910e81 −0.784646
\(226\) 4.07792e80 0.247569
\(227\) 2.13570e81 1.11339 0.556696 0.830716i \(-0.312069\pi\)
0.556696 + 0.830716i \(0.312069\pi\)
\(228\) 1.08690e81 0.486898
\(229\) −1.45659e81 −0.561064 −0.280532 0.959845i \(-0.590511\pi\)
−0.280532 + 0.959845i \(0.590511\pi\)
\(230\) 7.48075e80 0.247933
\(231\) −6.01847e81 −1.71741
\(232\) −1.21087e81 −0.297688
\(233\) −4.98509e81 −1.05656 −0.528279 0.849071i \(-0.677163\pi\)
−0.528279 + 0.849071i \(0.677163\pi\)
\(234\) 2.44010e81 0.446130
\(235\) −6.32617e80 −0.0998389
\(236\) 1.04612e82 1.42599
\(237\) 8.15734e81 0.961016
\(238\) 4.95030e80 0.0504344
\(239\) −1.52673e82 −1.34597 −0.672984 0.739657i \(-0.734988\pi\)
−0.672984 + 0.739657i \(0.734988\pi\)
\(240\) 7.35837e81 0.561686
\(241\) 7.65570e81 0.506287 0.253144 0.967429i \(-0.418535\pi\)
0.253144 + 0.967429i \(0.418535\pi\)
\(242\) −7.09896e81 −0.406972
\(243\) 2.87352e82 1.42889
\(244\) −2.80571e82 −1.21086
\(245\) 5.64082e81 0.211403
\(246\) 7.29029e81 0.237402
\(247\) −1.98856e82 −0.562980
\(248\) −2.06027e82 −0.507388
\(249\) −2.26090e82 −0.484623
\(250\) −1.30698e82 −0.243972
\(251\) −5.91288e82 −0.961735 −0.480868 0.876793i \(-0.659678\pi\)
−0.480868 + 0.876793i \(0.659678\pi\)
\(252\) −5.23078e82 −0.741734
\(253\) 2.25309e83 2.78690
\(254\) 1.86887e82 0.201751
\(255\) −1.83461e82 −0.172945
\(256\) 3.86962e82 0.318705
\(257\) 5.81357e82 0.418552 0.209276 0.977857i \(-0.432889\pi\)
0.209276 + 0.977857i \(0.432889\pi\)
\(258\) 1.14397e83 0.720334
\(259\) −8.90184e82 −0.490499
\(260\) −1.47920e83 −0.713585
\(261\) −1.39384e83 −0.588999
\(262\) 4.45267e82 0.164902
\(263\) 2.53167e83 0.822117 0.411058 0.911609i \(-0.365159\pi\)
0.411058 + 0.911609i \(0.365159\pi\)
\(264\) −4.20912e83 −1.19910
\(265\) −1.15081e83 −0.287753
\(266\) −3.53744e82 −0.0776735
\(267\) 3.48374e83 0.672060
\(268\) 3.17701e83 0.538726
\(269\) −1.26960e84 −1.89327 −0.946635 0.322307i \(-0.895542\pi\)
−0.946635 + 0.322307i \(0.895542\pi\)
\(270\) −8.15836e81 −0.0107042
\(271\) 5.66289e83 0.654029 0.327015 0.945019i \(-0.393957\pi\)
0.327015 + 0.945019i \(0.393957\pi\)
\(272\) −1.82289e83 −0.185410
\(273\) 1.86548e84 1.67178
\(274\) 9.85805e82 0.0778747
\(275\) −1.68041e84 −1.17068
\(276\) 3.81711e84 2.34624
\(277\) −5.54041e83 −0.300601 −0.150300 0.988640i \(-0.548024\pi\)
−0.150300 + 0.988640i \(0.548024\pi\)
\(278\) 7.53161e82 0.0360863
\(279\) −2.37159e84 −1.00391
\(280\) −5.48105e83 −0.205074
\(281\) −5.34120e84 −1.76714 −0.883570 0.468299i \(-0.844867\pi\)
−0.883570 + 0.468299i \(0.844867\pi\)
\(282\) 2.67870e83 0.0784025
\(283\) 3.82595e84 0.991076 0.495538 0.868586i \(-0.334971\pi\)
0.495538 + 0.868586i \(0.334971\pi\)
\(284\) −3.64211e84 −0.835354
\(285\) 1.31100e84 0.266351
\(286\) 3.69703e84 0.665618
\(287\) 2.85925e84 0.456379
\(288\) −5.56022e84 −0.787139
\(289\) −7.50666e84 −0.942912
\(290\) −7.01170e83 −0.0781794
\(291\) 1.63494e85 1.61880
\(292\) 6.56557e84 0.577516
\(293\) 5.88808e84 0.460300 0.230150 0.973155i \(-0.426078\pi\)
0.230150 + 0.973155i \(0.426078\pi\)
\(294\) −2.38850e84 −0.166013
\(295\) 1.26181e85 0.780070
\(296\) −6.22565e84 −0.342468
\(297\) −2.45718e84 −0.120320
\(298\) −1.29893e84 −0.0566400
\(299\) −6.98366e85 −2.71286
\(300\) −2.84689e85 −0.985571
\(301\) 4.48663e85 1.38477
\(302\) −3.15401e84 −0.0868207
\(303\) 4.42459e85 1.08668
\(304\) 1.30262e85 0.285549
\(305\) −3.38419e85 −0.662384
\(306\) 3.98521e84 0.0696727
\(307\) 7.32850e84 0.114483 0.0572415 0.998360i \(-0.481770\pi\)
0.0572415 + 0.998360i \(0.481770\pi\)
\(308\) −7.92523e85 −1.10665
\(309\) 1.65512e86 2.06663
\(310\) −1.19303e85 −0.133251
\(311\) −1.15607e86 −1.15545 −0.577727 0.816230i \(-0.696060\pi\)
−0.577727 + 0.816230i \(0.696060\pi\)
\(312\) 1.30465e86 1.16724
\(313\) 8.69860e85 0.696899 0.348449 0.937328i \(-0.386708\pi\)
0.348449 + 0.937328i \(0.386708\pi\)
\(314\) −1.52889e85 −0.109725
\(315\) −6.30927e85 −0.405756
\(316\) 1.07417e86 0.619255
\(317\) −2.43097e86 −1.25671 −0.628356 0.777926i \(-0.716272\pi\)
−0.628356 + 0.777926i \(0.716272\pi\)
\(318\) 4.87287e85 0.225969
\(319\) −2.11182e86 −0.878776
\(320\) 7.69663e85 0.287493
\(321\) −3.83499e86 −1.28630
\(322\) −1.24232e86 −0.374289
\(323\) −3.24774e85 −0.0879213
\(324\) 3.58117e86 0.871410
\(325\) 5.20858e86 1.13958
\(326\) −4.76736e85 −0.0938146
\(327\) 2.53049e86 0.448030
\(328\) 1.99966e86 0.318646
\(329\) 1.05058e86 0.150720
\(330\) −2.43735e86 −0.314910
\(331\) 5.07358e86 0.590539 0.295269 0.955414i \(-0.404591\pi\)
0.295269 + 0.955414i \(0.404591\pi\)
\(332\) −2.97719e86 −0.312279
\(333\) −7.16638e86 −0.677601
\(334\) 5.81063e86 0.495416
\(335\) 3.83205e86 0.294703
\(336\) −1.22200e87 −0.847941
\(337\) −9.67112e86 −0.605683 −0.302841 0.953041i \(-0.597935\pi\)
−0.302841 + 0.953041i \(0.597935\pi\)
\(338\) −6.56361e86 −0.371122
\(339\) 2.50981e87 1.28159
\(340\) −2.41585e86 −0.111441
\(341\) −3.59322e87 −1.49781
\(342\) −2.84780e86 −0.107302
\(343\) −3.17505e87 −1.08169
\(344\) 3.13780e87 0.966849
\(345\) 4.60413e87 1.28348
\(346\) 5.08514e85 0.0128286
\(347\) 6.61082e87 1.50969 0.754847 0.655901i \(-0.227711\pi\)
0.754847 + 0.655901i \(0.227711\pi\)
\(348\) −3.57777e87 −0.739825
\(349\) 3.04467e87 0.570247 0.285123 0.958491i \(-0.407965\pi\)
0.285123 + 0.958491i \(0.407965\pi\)
\(350\) 9.26554e86 0.157226
\(351\) 7.61624e86 0.117124
\(352\) −8.42436e87 −1.17440
\(353\) 7.37095e86 0.0931742 0.0465871 0.998914i \(-0.485165\pi\)
0.0465871 + 0.998914i \(0.485165\pi\)
\(354\) −5.34289e87 −0.612581
\(355\) −4.39304e87 −0.456970
\(356\) 4.58745e87 0.433058
\(357\) 3.04673e87 0.261084
\(358\) 3.19144e87 0.248326
\(359\) 1.32606e87 0.0937143 0.0468572 0.998902i \(-0.485079\pi\)
0.0468572 + 0.998902i \(0.485079\pi\)
\(360\) −4.41249e87 −0.283301
\(361\) −1.48187e88 −0.864593
\(362\) 5.13080e87 0.272107
\(363\) −4.36915e88 −2.10678
\(364\) 2.45649e88 1.07725
\(365\) 7.91926e87 0.315923
\(366\) 1.43297e88 0.520164
\(367\) 1.96257e88 0.648403 0.324201 0.945988i \(-0.394904\pi\)
0.324201 + 0.945988i \(0.394904\pi\)
\(368\) 4.57471e88 1.37599
\(369\) 2.30182e88 0.630466
\(370\) −3.60505e87 −0.0899397
\(371\) 1.91114e88 0.434402
\(372\) −6.08751e88 −1.26098
\(373\) −4.03852e88 −0.762548 −0.381274 0.924462i \(-0.624515\pi\)
−0.381274 + 0.924462i \(0.624515\pi\)
\(374\) 6.03805e87 0.103950
\(375\) −8.04400e88 −1.26297
\(376\) 7.34742e87 0.105234
\(377\) 6.54577e88 0.855430
\(378\) 1.35485e87 0.0161594
\(379\) −1.57713e89 −1.71717 −0.858586 0.512669i \(-0.828657\pi\)
−0.858586 + 0.512669i \(0.828657\pi\)
\(380\) 1.72634e88 0.171630
\(381\) 1.15022e89 1.04441
\(382\) −2.19401e88 −0.181993
\(383\) 1.65255e89 1.25256 0.626278 0.779599i \(-0.284577\pi\)
0.626278 + 0.779599i \(0.284577\pi\)
\(384\) −1.87156e89 −1.29651
\(385\) −9.55925e88 −0.605381
\(386\) −3.36341e88 −0.194768
\(387\) 3.61194e89 1.91299
\(388\) 2.15292e89 1.04312
\(389\) −2.04536e89 −0.906794 −0.453397 0.891309i \(-0.649788\pi\)
−0.453397 + 0.891309i \(0.649788\pi\)
\(390\) 7.55477e88 0.306544
\(391\) −1.14058e89 −0.423671
\(392\) −6.55143e88 −0.222826
\(393\) 2.74046e89 0.853650
\(394\) 4.30115e88 0.122734
\(395\) 1.29565e89 0.338756
\(396\) −6.38016e89 −1.52879
\(397\) −2.28353e89 −0.501574 −0.250787 0.968042i \(-0.580689\pi\)
−0.250787 + 0.968042i \(0.580689\pi\)
\(398\) 9.33175e88 0.187930
\(399\) −2.17717e89 −0.402093
\(400\) −3.41193e89 −0.578003
\(401\) −4.35274e89 −0.676522 −0.338261 0.941052i \(-0.609839\pi\)
−0.338261 + 0.941052i \(0.609839\pi\)
\(402\) −1.62261e89 −0.231427
\(403\) 1.11375e90 1.45802
\(404\) 5.82637e89 0.700230
\(405\) 4.31954e89 0.476693
\(406\) 1.16443e89 0.118022
\(407\) −1.08579e90 −1.01097
\(408\) 2.13078e89 0.182290
\(409\) 4.28319e89 0.336754 0.168377 0.985723i \(-0.446147\pi\)
0.168377 + 0.985723i \(0.446147\pi\)
\(410\) 1.15793e89 0.0836834
\(411\) 6.06727e89 0.403135
\(412\) 2.17949e90 1.33169
\(413\) −2.09548e90 −1.17762
\(414\) −1.00013e90 −0.517063
\(415\) −3.59103e89 −0.170828
\(416\) 2.61120e90 1.14320
\(417\) 4.63543e89 0.186808
\(418\) −4.31474e89 −0.160093
\(419\) −4.72781e90 −1.61538 −0.807692 0.589605i \(-0.799284\pi\)
−0.807692 + 0.589605i \(0.799284\pi\)
\(420\) −1.61950e90 −0.509659
\(421\) −2.27950e90 −0.660856 −0.330428 0.943831i \(-0.607193\pi\)
−0.330428 + 0.943831i \(0.607193\pi\)
\(422\) −1.77260e90 −0.473512
\(423\) 8.45767e89 0.208213
\(424\) 1.33658e90 0.303301
\(425\) 8.50673e89 0.177969
\(426\) 1.86015e90 0.358854
\(427\) 5.62010e90 0.999959
\(428\) −5.04998e90 −0.828858
\(429\) 2.27539e91 3.44571
\(430\) 1.81698e90 0.253916
\(431\) −1.51932e91 −1.95967 −0.979837 0.199798i \(-0.935971\pi\)
−0.979837 + 0.199798i \(0.935971\pi\)
\(432\) −4.98909e89 −0.0594062
\(433\) −9.57091e90 −1.05225 −0.526127 0.850406i \(-0.676356\pi\)
−0.526127 + 0.850406i \(0.676356\pi\)
\(434\) 1.98125e90 0.201161
\(435\) −4.31544e90 −0.404712
\(436\) 3.33219e90 0.288699
\(437\) 8.15051e90 0.652492
\(438\) −3.35326e90 −0.248091
\(439\) 7.99929e90 0.547048 0.273524 0.961865i \(-0.411811\pi\)
0.273524 + 0.961865i \(0.411811\pi\)
\(440\) −6.68542e90 −0.422680
\(441\) −7.54139e90 −0.440880
\(442\) −1.87155e90 −0.101189
\(443\) −8.18200e90 −0.409196 −0.204598 0.978846i \(-0.565589\pi\)
−0.204598 + 0.978846i \(0.565589\pi\)
\(444\) −1.83950e91 −0.851115
\(445\) 5.53329e90 0.236899
\(446\) −5.55308e90 −0.220030
\(447\) −7.99441e90 −0.293209
\(448\) −1.27817e91 −0.434009
\(449\) 5.69186e91 1.78960 0.894799 0.446468i \(-0.147319\pi\)
0.894799 + 0.446468i \(0.147319\pi\)
\(450\) 7.45918e90 0.217200
\(451\) 3.48752e91 0.940645
\(452\) 3.30495e91 0.825828
\(453\) −1.94118e91 −0.449445
\(454\) −1.43635e91 −0.308201
\(455\) 2.96297e91 0.589298
\(456\) −1.52264e91 −0.280743
\(457\) −7.50198e91 −1.28253 −0.641264 0.767320i \(-0.721590\pi\)
−0.641264 + 0.767320i \(0.721590\pi\)
\(458\) 9.79619e90 0.155310
\(459\) 1.24390e90 0.0182914
\(460\) 6.06279e91 0.827042
\(461\) −9.01739e91 −1.14130 −0.570649 0.821194i \(-0.693308\pi\)
−0.570649 + 0.821194i \(0.693308\pi\)
\(462\) 4.04769e91 0.475399
\(463\) −6.50698e91 −0.709309 −0.354655 0.934997i \(-0.615402\pi\)
−0.354655 + 0.934997i \(0.615402\pi\)
\(464\) −4.28787e91 −0.433882
\(465\) −7.34264e91 −0.689803
\(466\) 3.35269e91 0.292469
\(467\) −2.91848e91 −0.236442 −0.118221 0.992987i \(-0.537719\pi\)
−0.118221 + 0.992987i \(0.537719\pi\)
\(468\) 1.97759e92 1.48817
\(469\) −6.36385e91 −0.444894
\(470\) 4.25463e90 0.0276367
\(471\) −9.40978e91 −0.568013
\(472\) −1.46550e92 −0.822220
\(473\) 5.47249e92 2.85414
\(474\) −5.48617e91 −0.266021
\(475\) −6.07884e91 −0.274089
\(476\) 4.01198e91 0.168236
\(477\) 1.53855e92 0.600106
\(478\) 1.02679e92 0.372581
\(479\) −1.18268e92 −0.399293 −0.199647 0.979868i \(-0.563979\pi\)
−0.199647 + 0.979868i \(0.563979\pi\)
\(480\) −1.72149e92 −0.540857
\(481\) 3.36549e92 0.984110
\(482\) −5.14879e91 −0.140147
\(483\) −7.64605e92 −1.93759
\(484\) −5.75337e92 −1.35755
\(485\) 2.59681e92 0.570624
\(486\) −1.93257e92 −0.395534
\(487\) 1.07235e92 0.204451 0.102225 0.994761i \(-0.467404\pi\)
0.102225 + 0.994761i \(0.467404\pi\)
\(488\) 3.93051e92 0.698176
\(489\) −2.93413e92 −0.485651
\(490\) −3.79370e91 −0.0585191
\(491\) 6.08028e92 0.874202 0.437101 0.899412i \(-0.356005\pi\)
0.437101 + 0.899412i \(0.356005\pi\)
\(492\) 5.90843e92 0.791911
\(493\) 1.06907e92 0.133594
\(494\) 1.33739e92 0.155840
\(495\) −7.69563e92 −0.836305
\(496\) −7.29572e92 −0.739521
\(497\) 7.29550e92 0.689858
\(498\) 1.52055e92 0.134150
\(499\) 3.14472e91 0.0258889 0.0129444 0.999916i \(-0.495880\pi\)
0.0129444 + 0.999916i \(0.495880\pi\)
\(500\) −1.05925e93 −0.813827
\(501\) 3.57623e93 2.56462
\(502\) 3.97667e92 0.266220
\(503\) −1.72824e93 −1.08021 −0.540105 0.841598i \(-0.681616\pi\)
−0.540105 + 0.841598i \(0.681616\pi\)
\(504\) 7.32779e92 0.427681
\(505\) 7.02765e92 0.383052
\(506\) −1.51530e93 −0.771449
\(507\) −4.03966e93 −1.92119
\(508\) 1.51463e93 0.672989
\(509\) −1.42010e93 −0.589596 −0.294798 0.955560i \(-0.595252\pi\)
−0.294798 + 0.955560i \(0.595252\pi\)
\(510\) 1.23386e92 0.0478733
\(511\) −1.31515e93 −0.476928
\(512\) −2.92927e93 −0.992991
\(513\) −8.88877e91 −0.0281704
\(514\) −3.90988e92 −0.115861
\(515\) 2.62886e93 0.728482
\(516\) 9.27131e93 2.40285
\(517\) 1.28143e93 0.310650
\(518\) 5.98688e92 0.135776
\(519\) 3.12972e92 0.0664097
\(520\) 2.07220e93 0.411450
\(521\) −8.81177e93 −1.63743 −0.818713 0.574204i \(-0.805312\pi\)
−0.818713 + 0.574204i \(0.805312\pi\)
\(522\) 9.37416e92 0.163042
\(523\) −2.80331e93 −0.456418 −0.228209 0.973612i \(-0.573287\pi\)
−0.228209 + 0.973612i \(0.573287\pi\)
\(524\) 3.60868e93 0.550071
\(525\) 5.70260e93 0.813911
\(526\) −1.70266e93 −0.227572
\(527\) 1.81899e93 0.227701
\(528\) −1.49051e94 −1.74769
\(529\) 1.95202e94 2.14419
\(530\) 7.73967e92 0.0796535
\(531\) −1.68695e94 −1.62683
\(532\) −2.86693e93 −0.259099
\(533\) −1.08099e94 −0.915655
\(534\) −2.34297e93 −0.186034
\(535\) −6.09119e93 −0.453416
\(536\) −4.45066e93 −0.310627
\(537\) 1.96421e94 1.28551
\(538\) 8.53860e93 0.524081
\(539\) −1.14261e94 −0.657785
\(540\) −6.61196e92 −0.0357063
\(541\) 2.30494e94 1.16776 0.583880 0.811840i \(-0.301534\pi\)
0.583880 + 0.811840i \(0.301534\pi\)
\(542\) −3.80854e93 −0.181043
\(543\) 3.15782e94 1.40862
\(544\) 4.26466e93 0.178534
\(545\) 4.01922e93 0.157929
\(546\) −1.25462e94 −0.462769
\(547\) −4.73577e94 −1.63994 −0.819970 0.572406i \(-0.806010\pi\)
−0.819970 + 0.572406i \(0.806010\pi\)
\(548\) 7.98947e93 0.259770
\(549\) 4.52443e94 1.38140
\(550\) 1.13015e94 0.324058
\(551\) −7.63945e93 −0.205746
\(552\) −5.34739e94 −1.35283
\(553\) −2.15167e94 −0.511397
\(554\) 3.72617e93 0.0832100
\(555\) −2.21877e94 −0.465592
\(556\) 6.10401e93 0.120375
\(557\) 9.22074e94 1.70908 0.854538 0.519389i \(-0.173840\pi\)
0.854538 + 0.519389i \(0.173840\pi\)
\(558\) 1.59500e94 0.277894
\(559\) −1.69625e95 −2.77832
\(560\) −1.94092e94 −0.298897
\(561\) 3.71620e94 0.538121
\(562\) 3.59219e94 0.489166
\(563\) 7.88231e93 0.100952 0.0504759 0.998725i \(-0.483926\pi\)
0.0504759 + 0.998725i \(0.483926\pi\)
\(564\) 2.17096e94 0.261530
\(565\) 3.98637e94 0.451759
\(566\) −2.57312e94 −0.274342
\(567\) −7.17343e94 −0.719633
\(568\) 5.10222e94 0.481661
\(569\) 9.17833e94 0.815437 0.407718 0.913108i \(-0.366324\pi\)
0.407718 + 0.913108i \(0.366324\pi\)
\(570\) −8.81704e93 −0.0737293
\(571\) 1.43436e95 1.12905 0.564526 0.825416i \(-0.309059\pi\)
0.564526 + 0.825416i \(0.309059\pi\)
\(572\) 2.99627e95 2.22033
\(573\) −1.35034e95 −0.942122
\(574\) −1.92297e94 −0.126331
\(575\) −2.13484e95 −1.32076
\(576\) −1.02899e95 −0.599563
\(577\) −2.02368e95 −1.11065 −0.555323 0.831635i \(-0.687405\pi\)
−0.555323 + 0.831635i \(0.687405\pi\)
\(578\) 5.04855e94 0.261010
\(579\) −2.07006e95 −1.00826
\(580\) −5.68264e94 −0.260786
\(581\) 5.96360e94 0.257888
\(582\) −1.09957e95 −0.448105
\(583\) 2.33108e95 0.895347
\(584\) −9.19769e94 −0.332993
\(585\) 2.38533e95 0.814087
\(586\) −3.95999e94 −0.127417
\(587\) 3.87261e95 1.17487 0.587434 0.809272i \(-0.300138\pi\)
0.587434 + 0.809272i \(0.300138\pi\)
\(588\) −1.93576e95 −0.553777
\(589\) −1.29984e95 −0.350680
\(590\) −8.48621e94 −0.215933
\(591\) 2.64720e95 0.635358
\(592\) −2.20460e95 −0.499149
\(593\) 1.94348e95 0.415139 0.207569 0.978220i \(-0.433445\pi\)
0.207569 + 0.978220i \(0.433445\pi\)
\(594\) 1.65256e94 0.0333062
\(595\) 4.83917e94 0.0920314
\(596\) −1.05272e95 −0.188936
\(597\) 5.74335e95 0.972861
\(598\) 4.69682e95 0.750953
\(599\) 2.48951e94 0.0375741 0.0187871 0.999824i \(-0.494020\pi\)
0.0187871 + 0.999824i \(0.494020\pi\)
\(600\) 3.98821e95 0.568276
\(601\) −9.88491e95 −1.32985 −0.664926 0.746909i \(-0.731537\pi\)
−0.664926 + 0.746909i \(0.731537\pi\)
\(602\) −3.01745e95 −0.383320
\(603\) −5.12319e95 −0.614601
\(604\) −2.55617e95 −0.289611
\(605\) −6.93960e95 −0.742632
\(606\) −2.97573e95 −0.300807
\(607\) −2.30873e95 −0.220477 −0.110239 0.993905i \(-0.535162\pi\)
−0.110239 + 0.993905i \(0.535162\pi\)
\(608\) −3.04749e95 −0.274959
\(609\) 7.16662e95 0.610967
\(610\) 2.27601e95 0.183356
\(611\) −3.97191e95 −0.302397
\(612\) 3.22983e95 0.232410
\(613\) 1.67994e96 1.14263 0.571317 0.820729i \(-0.306433\pi\)
0.571317 + 0.820729i \(0.306433\pi\)
\(614\) −4.92873e94 −0.0316903
\(615\) 7.12664e95 0.433205
\(616\) 1.11024e96 0.638092
\(617\) −1.01648e96 −0.552407 −0.276204 0.961099i \(-0.589076\pi\)
−0.276204 + 0.961099i \(0.589076\pi\)
\(618\) −1.11314e96 −0.572069
\(619\) 1.08493e96 0.527318 0.263659 0.964616i \(-0.415071\pi\)
0.263659 + 0.964616i \(0.415071\pi\)
\(620\) −9.66891e95 −0.444492
\(621\) −3.12167e95 −0.135746
\(622\) 7.77511e95 0.319844
\(623\) −9.18910e95 −0.357631
\(624\) 4.61998e96 1.70126
\(625\) 8.59982e95 0.299660
\(626\) −5.85019e95 −0.192910
\(627\) −2.65556e96 −0.828756
\(628\) −1.23910e96 −0.366013
\(629\) 5.49658e95 0.153690
\(630\) 4.24326e95 0.112318
\(631\) −3.61793e96 −0.906667 −0.453333 0.891341i \(-0.649765\pi\)
−0.453333 + 0.891341i \(0.649765\pi\)
\(632\) −1.50480e96 −0.357060
\(633\) −1.09097e97 −2.45123
\(634\) 1.63494e96 0.347874
\(635\) 1.82692e96 0.368150
\(636\) 3.94923e96 0.753775
\(637\) 3.54161e96 0.640309
\(638\) 1.42029e96 0.243256
\(639\) 5.87320e96 0.953006
\(640\) −2.97264e96 −0.457017
\(641\) −5.93103e96 −0.864028 −0.432014 0.901867i \(-0.642197\pi\)
−0.432014 + 0.901867i \(0.642197\pi\)
\(642\) 2.57920e96 0.356063
\(643\) 1.51768e97 1.98565 0.992825 0.119580i \(-0.0381550\pi\)
0.992825 + 0.119580i \(0.0381550\pi\)
\(644\) −1.00684e97 −1.24853
\(645\) 1.11829e97 1.31445
\(646\) 2.18425e95 0.0243377
\(647\) 1.33789e97 1.41326 0.706630 0.707584i \(-0.250215\pi\)
0.706630 + 0.707584i \(0.250215\pi\)
\(648\) −5.01685e96 −0.502451
\(649\) −2.55592e97 −2.42720
\(650\) −3.50300e96 −0.315449
\(651\) 1.21939e97 1.04135
\(652\) −3.86372e96 −0.312941
\(653\) −1.19882e97 −0.920978 −0.460489 0.887665i \(-0.652326\pi\)
−0.460489 + 0.887665i \(0.652326\pi\)
\(654\) −1.70186e96 −0.124020
\(655\) 4.35272e96 0.300909
\(656\) 7.08110e96 0.464428
\(657\) −1.05875e97 −0.658854
\(658\) −7.06563e95 −0.0417213
\(659\) 1.08314e97 0.606929 0.303465 0.952843i \(-0.401857\pi\)
0.303465 + 0.952843i \(0.401857\pi\)
\(660\) −1.97535e97 −1.05046
\(661\) 1.68218e97 0.849028 0.424514 0.905421i \(-0.360445\pi\)
0.424514 + 0.905421i \(0.360445\pi\)
\(662\) −3.41220e96 −0.163469
\(663\) −1.15187e97 −0.523825
\(664\) 4.17074e96 0.180059
\(665\) −3.45803e96 −0.141737
\(666\) 4.81971e96 0.187568
\(667\) −2.68292e97 −0.991439
\(668\) 4.70924e97 1.65258
\(669\) −3.41772e97 −1.13903
\(670\) −2.57722e96 −0.0815775
\(671\) 6.85502e97 2.06102
\(672\) 2.85887e97 0.816497
\(673\) 1.90781e97 0.517624 0.258812 0.965928i \(-0.416669\pi\)
0.258812 + 0.965928i \(0.416669\pi\)
\(674\) 6.50425e96 0.167661
\(675\) 2.32822e96 0.0570221
\(676\) −5.31949e97 −1.23797
\(677\) 1.40207e97 0.310070 0.155035 0.987909i \(-0.450451\pi\)
0.155035 + 0.987909i \(0.450451\pi\)
\(678\) −1.68795e97 −0.354761
\(679\) −4.31250e97 −0.861434
\(680\) 3.38435e96 0.0642567
\(681\) −8.84021e97 −1.59547
\(682\) 2.41660e97 0.414613
\(683\) −2.55619e97 −0.416945 −0.208472 0.978028i \(-0.566849\pi\)
−0.208472 + 0.978028i \(0.566849\pi\)
\(684\) −2.30801e97 −0.357933
\(685\) 9.63675e96 0.142104
\(686\) 2.13536e97 0.299425
\(687\) 6.02920e97 0.803993
\(688\) 1.11114e98 1.40919
\(689\) −7.22538e97 −0.871560
\(690\) −3.09648e97 −0.355283
\(691\) −1.18804e98 −1.29669 −0.648346 0.761346i \(-0.724539\pi\)
−0.648346 + 0.761346i \(0.724539\pi\)
\(692\) 4.12127e96 0.0427928
\(693\) 1.27801e98 1.26252
\(694\) −4.44607e97 −0.417902
\(695\) 7.36253e96 0.0658494
\(696\) 5.01209e97 0.426580
\(697\) −1.76548e97 −0.142999
\(698\) −2.04767e97 −0.157851
\(699\) 2.06346e98 1.51402
\(700\) 7.50928e97 0.524464
\(701\) 9.38181e97 0.623756 0.311878 0.950122i \(-0.399042\pi\)
0.311878 + 0.950122i \(0.399042\pi\)
\(702\) −5.12225e96 −0.0324213
\(703\) −3.92781e97 −0.236696
\(704\) −1.55903e98 −0.894537
\(705\) 2.61857e97 0.143067
\(706\) −4.95728e96 −0.0257918
\(707\) −1.16708e98 −0.578269
\(708\) −4.33016e98 −2.04341
\(709\) 2.22016e98 0.997903 0.498951 0.866630i \(-0.333719\pi\)
0.498951 + 0.866630i \(0.333719\pi\)
\(710\) 2.95451e97 0.126495
\(711\) −1.73219e98 −0.706471
\(712\) −6.42655e97 −0.249700
\(713\) −4.56493e98 −1.68984
\(714\) −2.04906e97 −0.0722713
\(715\) 3.61404e98 1.21460
\(716\) 2.58651e98 0.828351
\(717\) 6.31953e98 1.92874
\(718\) −8.91836e96 −0.0259413
\(719\) 5.69180e97 0.157799 0.0788993 0.996883i \(-0.474859\pi\)
0.0788993 + 0.996883i \(0.474859\pi\)
\(720\) −1.56253e98 −0.412912
\(721\) −4.36574e98 −1.09974
\(722\) 9.96622e97 0.239330
\(723\) −3.16889e98 −0.725498
\(724\) 4.15827e98 0.907678
\(725\) 2.00098e98 0.416469
\(726\) 2.93844e98 0.583182
\(727\) 3.64329e98 0.689535 0.344767 0.938688i \(-0.387958\pi\)
0.344767 + 0.938688i \(0.387958\pi\)
\(728\) −3.44129e98 −0.621140
\(729\) −6.41219e98 −1.10384
\(730\) −5.32605e97 −0.0874514
\(731\) −2.77034e98 −0.433893
\(732\) 1.16135e99 1.73513
\(733\) 6.80586e98 0.970053 0.485027 0.874499i \(-0.338810\pi\)
0.485027 + 0.874499i \(0.338810\pi\)
\(734\) −1.31991e98 −0.179486
\(735\) −2.33488e98 −0.302936
\(736\) −1.07026e99 −1.32496
\(737\) −7.76220e98 −0.916973
\(738\) −1.54808e98 −0.174521
\(739\) −4.51663e98 −0.485939 −0.242969 0.970034i \(-0.578121\pi\)
−0.242969 + 0.970034i \(0.578121\pi\)
\(740\) −2.92172e98 −0.300016
\(741\) 8.23115e98 0.806738
\(742\) −1.28532e98 −0.120248
\(743\) −1.36718e99 −1.22099 −0.610493 0.792022i \(-0.709029\pi\)
−0.610493 + 0.792022i \(0.709029\pi\)
\(744\) 8.52798e98 0.727076
\(745\) −1.26977e98 −0.103355
\(746\) 2.71608e98 0.211083
\(747\) 4.80096e98 0.356260
\(748\) 4.89355e98 0.346752
\(749\) 1.01156e99 0.684493
\(750\) 5.40994e98 0.349606
\(751\) −5.82039e98 −0.359232 −0.179616 0.983737i \(-0.557485\pi\)
−0.179616 + 0.983737i \(0.557485\pi\)
\(752\) 2.60184e98 0.153379
\(753\) 2.44749e99 1.37814
\(754\) −4.40232e98 −0.236794
\(755\) −3.08320e98 −0.158428
\(756\) 1.09804e98 0.0539035
\(757\) 3.20631e99 1.50383 0.751913 0.659262i \(-0.229131\pi\)
0.751913 + 0.659262i \(0.229131\pi\)
\(758\) 1.06069e99 0.475335
\(759\) −9.32614e99 −3.99356
\(760\) −2.41843e98 −0.0989612
\(761\) 2.29653e99 0.898053 0.449026 0.893519i \(-0.351771\pi\)
0.449026 + 0.893519i \(0.351771\pi\)
\(762\) −7.73573e98 −0.289105
\(763\) −6.67469e98 −0.238416
\(764\) −1.77814e99 −0.607080
\(765\) 3.89575e98 0.127137
\(766\) −1.11141e99 −0.346723
\(767\) 7.92230e99 2.36272
\(768\) −1.60173e99 −0.456697
\(769\) −4.43332e99 −1.20856 −0.604282 0.796770i \(-0.706540\pi\)
−0.604282 + 0.796770i \(0.706540\pi\)
\(770\) 6.42901e98 0.167577
\(771\) −2.40639e99 −0.599776
\(772\) −2.72588e99 −0.649696
\(773\) 2.18161e99 0.497260 0.248630 0.968598i \(-0.420020\pi\)
0.248630 + 0.968598i \(0.420020\pi\)
\(774\) −2.42919e99 −0.529539
\(775\) 3.40463e99 0.709842
\(776\) −3.01602e99 −0.601457
\(777\) 3.68470e99 0.702874
\(778\) 1.37559e99 0.251012
\(779\) 1.26160e99 0.220231
\(780\) 6.12278e99 1.02255
\(781\) 8.89856e99 1.42187
\(782\) 7.67091e98 0.117277
\(783\) 2.92593e98 0.0428040
\(784\) −2.31996e99 −0.324771
\(785\) −1.49457e99 −0.200223
\(786\) −1.84308e99 −0.236301
\(787\) −5.72016e99 −0.701908 −0.350954 0.936393i \(-0.614143\pi\)
−0.350954 + 0.936393i \(0.614143\pi\)
\(788\) 3.48587e99 0.409409
\(789\) −1.04792e100 −1.17807
\(790\) −8.71378e98 −0.0937717
\(791\) −6.62014e99 −0.681991
\(792\) 8.93795e99 0.881494
\(793\) −2.12477e100 −2.00626
\(794\) 1.53578e99 0.138842
\(795\) 4.76348e99 0.412343
\(796\) 7.56294e99 0.626888
\(797\) 8.36136e99 0.663690 0.331845 0.943334i \(-0.392329\pi\)
0.331845 + 0.943334i \(0.392329\pi\)
\(798\) 1.46424e99 0.111304
\(799\) −6.48698e98 −0.0472258
\(800\) 7.98222e99 0.556569
\(801\) −7.39764e99 −0.494051
\(802\) 2.92741e99 0.187270
\(803\) −1.60413e100 −0.982999
\(804\) −1.31505e100 −0.771982
\(805\) −1.21444e100 −0.682993
\(806\) −7.49046e99 −0.403598
\(807\) 5.25520e100 2.71301
\(808\) −8.16215e99 −0.403750
\(809\) 1.17927e100 0.558969 0.279484 0.960150i \(-0.409836\pi\)
0.279484 + 0.960150i \(0.409836\pi\)
\(810\) −2.90508e99 −0.131955
\(811\) 3.58173e100 1.55910 0.779550 0.626340i \(-0.215448\pi\)
0.779550 + 0.626340i \(0.215448\pi\)
\(812\) 9.43713e99 0.393692
\(813\) −2.34401e100 −0.937209
\(814\) 7.30240e99 0.279849
\(815\) −4.66034e99 −0.171191
\(816\) 7.54542e99 0.265688
\(817\) 1.97966e100 0.668235
\(818\) −2.88063e99 −0.0932178
\(819\) −3.96130e100 −1.22897
\(820\) 9.38447e99 0.279146
\(821\) −6.03679e100 −1.72174 −0.860869 0.508826i \(-0.830080\pi\)
−0.860869 + 0.508826i \(0.830080\pi\)
\(822\) −4.08050e99 −0.111593
\(823\) −5.26932e100 −1.38185 −0.690924 0.722928i \(-0.742796\pi\)
−0.690924 + 0.722928i \(0.742796\pi\)
\(824\) −3.05325e100 −0.767844
\(825\) 6.95566e100 1.67756
\(826\) 1.40930e100 0.325980
\(827\) 9.11018e99 0.202110 0.101055 0.994881i \(-0.467778\pi\)
0.101055 + 0.994881i \(0.467778\pi\)
\(828\) −8.10555e100 −1.72479
\(829\) 4.86693e100 0.993399 0.496700 0.867923i \(-0.334545\pi\)
0.496700 + 0.867923i \(0.334545\pi\)
\(830\) 2.41512e99 0.0472874
\(831\) 2.29332e100 0.430754
\(832\) 4.83236e100 0.870772
\(833\) 5.78420e99 0.0999980
\(834\) −3.11753e99 −0.0517108
\(835\) 5.68019e100 0.904023
\(836\) −3.49689e100 −0.534029
\(837\) 4.97842e99 0.0729564
\(838\) 3.17966e100 0.447158
\(839\) −4.85563e100 −0.655327 −0.327664 0.944794i \(-0.606261\pi\)
−0.327664 + 0.944794i \(0.606261\pi\)
\(840\) 2.26875e100 0.293867
\(841\) −5.52912e100 −0.687375
\(842\) 1.53306e100 0.182933
\(843\) 2.21086e101 2.53227
\(844\) −1.43661e101 −1.57951
\(845\) −6.41627e100 −0.677214
\(846\) −5.68815e99 −0.0576360
\(847\) 1.15245e101 1.12110
\(848\) 4.73305e100 0.442063
\(849\) −1.58366e101 −1.42019
\(850\) −5.72115e99 −0.0492641
\(851\) −1.37942e101 −1.14058
\(852\) 1.50756e101 1.19704
\(853\) −1.95295e101 −1.48919 −0.744594 0.667518i \(-0.767357\pi\)
−0.744594 + 0.667518i \(0.767357\pi\)
\(854\) −3.77976e100 −0.276801
\(855\) −2.78387e100 −0.195803
\(856\) 7.07451e100 0.477916
\(857\) 2.23074e101 1.44747 0.723737 0.690076i \(-0.242423\pi\)
0.723737 + 0.690076i \(0.242423\pi\)
\(858\) −1.53030e101 −0.953815
\(859\) −2.74712e101 −1.64480 −0.822401 0.568908i \(-0.807366\pi\)
−0.822401 + 0.568908i \(0.807366\pi\)
\(860\) 1.47258e101 0.846997
\(861\) −1.18352e101 −0.653981
\(862\) 1.02181e101 0.542462
\(863\) 2.09690e101 1.06956 0.534781 0.844991i \(-0.320394\pi\)
0.534781 + 0.844991i \(0.320394\pi\)
\(864\) 1.16720e100 0.0572032
\(865\) 4.97099e99 0.0234092
\(866\) 6.43685e100 0.291277
\(867\) 3.10720e101 1.35117
\(868\) 1.60571e101 0.671021
\(869\) −2.62446e101 −1.05404
\(870\) 2.90232e100 0.112029
\(871\) 2.40596e101 0.892612
\(872\) −4.66806e100 −0.166463
\(873\) −3.47176e101 −1.19003
\(874\) −5.48157e100 −0.180618
\(875\) 2.12177e101 0.672080
\(876\) −2.71766e101 −0.827567
\(877\) −5.73845e99 −0.0168000 −0.00839999 0.999965i \(-0.502674\pi\)
−0.00839999 + 0.999965i \(0.502674\pi\)
\(878\) −5.37987e100 −0.151430
\(879\) −2.43723e101 −0.659599
\(880\) −2.36741e101 −0.616057
\(881\) 6.61154e101 1.65437 0.827187 0.561926i \(-0.189939\pi\)
0.827187 + 0.561926i \(0.189939\pi\)
\(882\) 5.07192e100 0.122041
\(883\) −3.07268e100 −0.0711005 −0.0355503 0.999368i \(-0.511318\pi\)
−0.0355503 + 0.999368i \(0.511318\pi\)
\(884\) −1.51680e101 −0.337540
\(885\) −5.22295e101 −1.11782
\(886\) 5.50275e100 0.113270
\(887\) 1.95143e101 0.386357 0.193179 0.981164i \(-0.438120\pi\)
0.193179 + 0.981164i \(0.438120\pi\)
\(888\) 2.57696e101 0.490749
\(889\) −3.03395e101 −0.555773
\(890\) −3.72138e100 −0.0655766
\(891\) −8.74967e101 −1.48324
\(892\) −4.50051e101 −0.733963
\(893\) 4.63554e100 0.0727320
\(894\) 5.37659e100 0.0811638
\(895\) 3.11979e101 0.453139
\(896\) 4.93664e101 0.689930
\(897\) 2.89072e102 3.88747
\(898\) −3.82803e101 −0.495383
\(899\) 4.27870e101 0.532847
\(900\) 6.04531e101 0.724522
\(901\) −1.18006e101 −0.136113
\(902\) −2.34551e101 −0.260382
\(903\) −1.85713e102 −1.98434
\(904\) −4.62990e101 −0.476169
\(905\) 5.01562e101 0.496534
\(906\) 1.30552e101 0.124412
\(907\) 6.03137e101 0.553305 0.276653 0.960970i \(-0.410775\pi\)
0.276653 + 0.960970i \(0.410775\pi\)
\(908\) −1.16409e102 −1.02808
\(909\) −9.39550e101 −0.798851
\(910\) −1.99273e101 −0.163125
\(911\) −1.49378e102 −1.17734 −0.588671 0.808373i \(-0.700348\pi\)
−0.588671 + 0.808373i \(0.700348\pi\)
\(912\) −5.39189e101 −0.409184
\(913\) 7.27400e101 0.531534
\(914\) 5.04541e101 0.355020
\(915\) 1.40080e102 0.949182
\(916\) 7.93934e101 0.518073
\(917\) −7.22852e101 −0.454263
\(918\) −8.36574e99 −0.00506328
\(919\) 6.29052e100 0.0366692 0.0183346 0.999832i \(-0.494164\pi\)
0.0183346 + 0.999832i \(0.494164\pi\)
\(920\) −8.49335e101 −0.476869
\(921\) −3.03345e101 −0.164052
\(922\) 6.06459e101 0.315925
\(923\) −2.75819e102 −1.38409
\(924\) 3.28046e102 1.58581
\(925\) 1.02880e102 0.479117
\(926\) 4.37623e101 0.196346
\(927\) −3.51461e102 −1.51924
\(928\) 1.00315e102 0.417792
\(929\) 1.38011e102 0.553824 0.276912 0.960895i \(-0.410689\pi\)
0.276912 + 0.960895i \(0.410689\pi\)
\(930\) 4.93824e101 0.190946
\(931\) −4.13334e101 −0.154006
\(932\) 2.71719e102 0.975600
\(933\) 4.78529e102 1.65574
\(934\) 1.96280e101 0.0654500
\(935\) 5.90250e101 0.189686
\(936\) −2.77040e102 −0.858075
\(937\) −3.52270e102 −1.05162 −0.525812 0.850601i \(-0.676238\pi\)
−0.525812 + 0.850601i \(0.676238\pi\)
\(938\) 4.27997e101 0.123152
\(939\) −3.60058e102 −0.998640
\(940\) 3.44817e101 0.0921888
\(941\) −1.93126e102 −0.497735 −0.248868 0.968537i \(-0.580058\pi\)
−0.248868 + 0.968537i \(0.580058\pi\)
\(942\) 6.32849e101 0.157233
\(943\) 4.43065e102 1.06124
\(944\) −5.18958e102 −1.19839
\(945\) 1.32444e101 0.0294872
\(946\) −3.68049e102 −0.790063
\(947\) −2.99511e102 −0.619925 −0.309962 0.950749i \(-0.600316\pi\)
−0.309962 + 0.950749i \(0.600316\pi\)
\(948\) −4.44628e102 −0.887378
\(949\) 4.97214e102 0.956883
\(950\) 4.08828e101 0.0758712
\(951\) 1.00624e103 1.80084
\(952\) −5.62037e101 −0.0970042
\(953\) −6.44143e102 −1.07220 −0.536102 0.844154i \(-0.680104\pi\)
−0.536102 + 0.844154i \(0.680104\pi\)
\(954\) −1.03474e102 −0.166117
\(955\) −2.14476e102 −0.332095
\(956\) 8.32166e102 1.24283
\(957\) 8.74137e102 1.25927
\(958\) 7.95404e101 0.110529
\(959\) −1.60037e102 −0.214525
\(960\) −3.18584e102 −0.411970
\(961\) −7.35858e101 −0.0917988
\(962\) −2.26344e102 −0.272414
\(963\) 8.14351e102 0.945594
\(964\) −4.17285e102 −0.467493
\(965\) −3.28791e102 −0.355408
\(966\) 5.14230e102 0.536348
\(967\) 1.87413e102 0.188619 0.0943096 0.995543i \(-0.469936\pi\)
0.0943096 + 0.995543i \(0.469936\pi\)
\(968\) 8.05987e102 0.782760
\(969\) 1.34432e102 0.125989
\(970\) −1.74647e102 −0.157956
\(971\) −1.78043e102 −0.155404 −0.0777020 0.996977i \(-0.524758\pi\)
−0.0777020 + 0.996977i \(0.524758\pi\)
\(972\) −1.56625e103 −1.31940
\(973\) −1.22269e102 −0.0994085
\(974\) −7.21204e101 −0.0565945
\(975\) −2.15597e103 −1.63299
\(976\) 1.39185e103 1.01759
\(977\) −1.73120e102 −0.122175 −0.0610877 0.998132i \(-0.519457\pi\)
−0.0610877 + 0.998132i \(0.519457\pi\)
\(978\) 1.97333e102 0.134434
\(979\) −1.12083e103 −0.737115
\(980\) −3.07461e102 −0.195205
\(981\) −5.37343e102 −0.329360
\(982\) −4.08925e102 −0.241990
\(983\) 1.37363e103 0.784825 0.392413 0.919789i \(-0.371641\pi\)
0.392413 + 0.919789i \(0.371641\pi\)
\(984\) −8.27711e102 −0.456612
\(985\) 4.20459e102 0.223962
\(986\) −7.18993e101 −0.0369804
\(987\) −4.34864e102 −0.215979
\(988\) 1.08389e103 0.519842
\(989\) 6.95242e103 3.22006
\(990\) 5.17565e102 0.231500
\(991\) −1.81342e103 −0.783354 −0.391677 0.920103i \(-0.628105\pi\)
−0.391677 + 0.920103i \(0.628105\pi\)
\(992\) 1.70684e103 0.712097
\(993\) −2.10009e103 −0.846229
\(994\) −4.90654e102 −0.190961
\(995\) 9.12227e102 0.342931
\(996\) 1.23234e103 0.447489
\(997\) −3.65689e103 −1.28271 −0.641356 0.767243i \(-0.721628\pi\)
−0.641356 + 0.767243i \(0.721628\pi\)
\(998\) −2.11496e101 −0.00716636
\(999\) 1.50436e102 0.0492429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))