Properties

Label 1.70.a.a.1.1
Level 1
Weight 70
Character 1.1
Self dual Yes
Analytic conductor 30.151
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 70 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(30.1514953292\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{17}\cdot 5^{5}\cdot 7^{2}\cdot 17\cdot 23 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.52577e8\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(-4.75433e10 q^{2}\) \(-9.70523e15 q^{3}\) \(+1.67007e21 q^{4}\) \(-1.40726e24 q^{5}\) \(+4.61419e26 q^{6}\) \(-1.18429e27 q^{7}\) \(-5.13361e31 q^{8}\) \(-7.40194e32 q^{9}\) \(+O(q^{10})\) \(q\)\(-4.75433e10 q^{2}\) \(-9.70523e15 q^{3}\) \(+1.67007e21 q^{4}\) \(-1.40726e24 q^{5}\) \(+4.61419e26 q^{6}\) \(-1.18429e27 q^{7}\) \(-5.13361e31 q^{8}\) \(-7.40194e32 q^{9}\) \(+6.69057e34 q^{10}\) \(+2.72474e34 q^{11}\) \(-1.62084e37 q^{12}\) \(+4.14237e38 q^{13}\) \(+5.63052e37 q^{14}\) \(+1.36578e40 q^{15}\) \(+1.45485e42 q^{16}\) \(-7.81618e41 q^{17}\) \(+3.51913e43 q^{18}\) \(+6.36441e43 q^{19}\) \(-2.35022e45 q^{20}\) \(+1.14938e43 q^{21}\) \(-1.29543e45 q^{22}\) \(+8.76109e46 q^{23}\) \(+4.98228e47 q^{24}\) \(+2.86308e47 q^{25}\) \(-1.96942e49 q^{26}\) \(+1.52816e49 q^{27}\) \(-1.97785e48 q^{28}\) \(+5.98090e49 q^{29}\) \(-6.49335e50 q^{30}\) \(+1.30933e51 q^{31}\) \(-3.88650e52 q^{32}\) \(-2.64442e50 q^{33}\) \(+3.71607e52 q^{34}\) \(+1.66661e51 q^{35}\) \(-1.23618e54 q^{36}\) \(+1.23271e54 q^{37}\) \(-3.02585e54 q^{38}\) \(-4.02026e54 q^{39}\) \(+7.22431e55 q^{40}\) \(+1.03929e55 q^{41}\) \(-5.46455e53 q^{42}\) \(-2.30147e56 q^{43}\) \(+4.55051e55 q^{44}\) \(+1.04164e57 q^{45}\) \(-4.16531e57 q^{46}\) \(+5.31802e57 q^{47}\) \(-1.41197e58 q^{48}\) \(-2.04991e58 q^{49}\) \(-1.36120e58 q^{50}\) \(+7.58578e57 q^{51}\) \(+6.91804e59 q^{52}\) \(-2.46445e59 q^{53}\) \(-7.26540e59 q^{54}\) \(-3.83441e58 q^{55}\) \(+6.07970e58 q^{56}\) \(-6.17680e59 q^{57}\) \(-2.84352e60 q^{58}\) \(-7.33567e60 q^{59}\) \(+2.28094e61 q^{60}\) \(-4.55049e61 q^{61}\) \(-6.22497e61 q^{62}\) \(+8.76606e59 q^{63}\) \(+9.88976e62 q^{64}\) \(-5.82938e62 q^{65}\) \(+1.25725e61 q^{66}\) \(-9.77457e62 q^{67}\) \(-1.30536e63 q^{68}\) \(-8.50284e62 q^{69}\) \(-7.92359e61 q^{70}\) \(-1.10646e64 q^{71}\) \(+3.79986e64 q^{72}\) \(+3.21128e63 q^{73}\) \(-5.86072e64 q^{74}\) \(-2.77868e63 q^{75}\) \(+1.06290e65 q^{76}\) \(-3.22689e61 q^{77}\) \(+1.91137e65 q^{78}\) \(+3.60745e65 q^{79}\) \(-2.04735e66 q^{80}\) \(+4.69295e65 q^{81}\) \(-4.94112e65 q^{82}\) \(+1.23807e66 q^{83}\) \(+1.91955e64 q^{84}\) \(+1.09994e66 q^{85}\) \(+1.09419e67 q^{86}\) \(-5.80460e65 q^{87}\) \(-1.39877e66 q^{88}\) \(-1.50302e67 q^{89}\) \(-4.95232e67 q^{90}\) \(-4.90578e65 q^{91}\) \(+1.46316e68 q^{92}\) \(-1.27073e67 q^{93}\) \(-2.52836e68 q^{94}\) \(-8.95636e67 q^{95}\) \(+3.77193e68 q^{96}\) \(-4.11315e68 q^{97}\) \(+9.74596e68 q^{98}\) \(-2.01684e67 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(5q \) \(\mathstrut -\mathstrut 18005734368q^{2} \) \(\mathstrut -\mathstrut 4858082326815804q^{3} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!60\)\(q^{4} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(65\!\cdots\!60\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(76\!\cdots\!92\)\(q^{7} \) \(\mathstrut -\mathstrut \)\(45\!\cdots\!00\)\(q^{8} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!35\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(5q \) \(\mathstrut -\mathstrut 18005734368q^{2} \) \(\mathstrut -\mathstrut 4858082326815804q^{3} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!60\)\(q^{4} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(65\!\cdots\!60\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(76\!\cdots\!92\)\(q^{7} \) \(\mathstrut -\mathstrut \)\(45\!\cdots\!00\)\(q^{8} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!35\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!40\)\(q^{11} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!48\)\(q^{12} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!86\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!20\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!00\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(95\!\cdots\!80\)\(q^{16} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!38\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!56\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!00\)\(q^{19} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!00\)\(q^{20} \) \(\mathstrut +\mathstrut \)\(30\!\cdots\!60\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!56\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(49\!\cdots\!76\)\(q^{23} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{24} \) \(\mathstrut +\mathstrut \)\(46\!\cdots\!75\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!40\)\(q^{26} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!00\)\(q^{27} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!96\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(62\!\cdots\!50\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{30} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!40\)\(q^{31} \) \(\mathstrut -\mathstrut \)\(59\!\cdots\!08\)\(q^{32} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!68\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(74\!\cdots\!00\)\(q^{35} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!20\)\(q^{36} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!02\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!00\)\(q^{38} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!80\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!10\)\(q^{41} \) \(\mathstrut +\mathstrut \)\(29\!\cdots\!24\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!56\)\(q^{43} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!80\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!50\)\(q^{45} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!40\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!28\)\(q^{47} \) \(\mathstrut -\mathstrut \)\(32\!\cdots\!24\)\(q^{48} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!15\)\(q^{49} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!00\)\(q^{50} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!60\)\(q^{51} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!32\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!46\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!00\)\(q^{54} \) \(\mathstrut +\mathstrut \)\(90\!\cdots\!00\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{56} \) \(\mathstrut -\mathstrut \)\(10\!\cdots\!00\)\(q^{57} \) \(\mathstrut -\mathstrut \)\(21\!\cdots\!00\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!00\)\(q^{59} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!10\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!04\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(32\!\cdots\!36\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!60\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(32\!\cdots\!00\)\(q^{65} \) \(\mathstrut -\mathstrut \)\(33\!\cdots\!80\)\(q^{66} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!88\)\(q^{67} \) \(\mathstrut -\mathstrut \)\(42\!\cdots\!56\)\(q^{68} \) \(\mathstrut -\mathstrut \)\(68\!\cdots\!20\)\(q^{69} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!00\)\(q^{70} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!40\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!00\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!26\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(33\!\cdots\!20\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!00\)\(q^{76} \) \(\mathstrut -\mathstrut \)\(68\!\cdots\!36\)\(q^{77} \) \(\mathstrut -\mathstrut \)\(57\!\cdots\!08\)\(q^{78} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!00\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!95\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(93\!\cdots\!16\)\(q^{82} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!16\)\(q^{83} \) \(\mathstrut +\mathstrut \)\(29\!\cdots\!20\)\(q^{84} \) \(\mathstrut +\mathstrut \)\(74\!\cdots\!00\)\(q^{85} \) \(\mathstrut +\mathstrut \)\(18\!\cdots\!60\)\(q^{86} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!00\)\(q^{87} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!50\)\(q^{89} \) \(\mathstrut -\mathstrut \)\(85\!\cdots\!00\)\(q^{90} \) \(\mathstrut -\mathstrut \)\(80\!\cdots\!40\)\(q^{91} \) \(\mathstrut -\mathstrut \)\(21\!\cdots\!88\)\(q^{92} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!88\)\(q^{93} \) \(\mathstrut -\mathstrut \)\(32\!\cdots\!80\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(78\!\cdots\!60\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!22\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(17\!\cdots\!24\)\(q^{98} \) \(\mathstrut +\mathstrut \)\(58\!\cdots\!80\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.75433e10 −1.95684 −0.978418 0.206634i \(-0.933749\pi\)
−0.978418 + 0.206634i \(0.933749\pi\)
\(3\) −9.70523e15 −0.335987 −0.167994 0.985788i \(-0.553729\pi\)
−0.167994 + 0.985788i \(0.553729\pi\)
\(4\) 1.67007e21 2.82921
\(5\) −1.40726e24 −1.08121 −0.540603 0.841278i \(-0.681804\pi\)
−0.540603 + 0.841278i \(0.681804\pi\)
\(6\) 4.61419e26 0.657472
\(7\) −1.18429e27 −0.00827136 −0.00413568 0.999991i \(-0.501316\pi\)
−0.00413568 + 0.999991i \(0.501316\pi\)
\(8\) −5.13361e31 −3.57946
\(9\) −7.40194e32 −0.887113
\(10\) 6.69057e34 2.11574
\(11\) 2.72474e34 0.0321572 0.0160786 0.999871i \(-0.494882\pi\)
0.0160786 + 0.999871i \(0.494882\pi\)
\(12\) −1.62084e37 −0.950578
\(13\) 4.14237e38 1.53533 0.767667 0.640849i \(-0.221418\pi\)
0.767667 + 0.640849i \(0.221418\pi\)
\(14\) 5.63052e37 0.0161857
\(15\) 1.36578e40 0.363271
\(16\) 1.45485e42 4.17522
\(17\) −7.81618e41 −0.277017 −0.138509 0.990361i \(-0.544231\pi\)
−0.138509 + 0.990361i \(0.544231\pi\)
\(18\) 3.51913e43 1.73593
\(19\) 6.36441e43 0.486137 0.243069 0.970009i \(-0.421846\pi\)
0.243069 + 0.970009i \(0.421846\pi\)
\(20\) −2.35022e45 −3.05896
\(21\) 1.14938e43 0.00277907
\(22\) −1.29543e45 −0.0629263
\(23\) 8.76109e46 0.918222 0.459111 0.888379i \(-0.348168\pi\)
0.459111 + 0.888379i \(0.348168\pi\)
\(24\) 4.98228e47 1.20265
\(25\) 2.86308e47 0.169006
\(26\) −1.96942e49 −3.00440
\(27\) 1.52816e49 0.634045
\(28\) −1.97785e48 −0.0234014
\(29\) 5.98090e49 0.210880 0.105440 0.994426i \(-0.466375\pi\)
0.105440 + 0.994426i \(0.466375\pi\)
\(30\) −6.49335e50 −0.710862
\(31\) 1.30933e51 0.462455 0.231228 0.972900i \(-0.425726\pi\)
0.231228 + 0.972900i \(0.425726\pi\)
\(32\) −3.88650e52 −4.59075
\(33\) −2.64442e50 −0.0108044
\(34\) 3.71607e52 0.542077
\(35\) 1.66661e51 0.00894304
\(36\) −1.23618e54 −2.50983
\(37\) 1.23271e54 0.972528 0.486264 0.873812i \(-0.338359\pi\)
0.486264 + 0.873812i \(0.338359\pi\)
\(38\) −3.02585e54 −0.951291
\(39\) −4.02026e54 −0.515852
\(40\) 7.22431e55 3.87014
\(41\) 1.03929e55 0.237516 0.118758 0.992923i \(-0.462109\pi\)
0.118758 + 0.992923i \(0.462109\pi\)
\(42\) −5.46455e53 −0.00543819
\(43\) −2.30147e56 −1.01705 −0.508525 0.861047i \(-0.669809\pi\)
−0.508525 + 0.861047i \(0.669809\pi\)
\(44\) 4.55051e55 0.0909793
\(45\) 1.04164e57 0.959152
\(46\) −4.16531e57 −1.79681
\(47\) 5.31802e57 1.09238 0.546190 0.837662i \(-0.316078\pi\)
0.546190 + 0.837662i \(0.316078\pi\)
\(48\) −1.41197e58 −1.40282
\(49\) −2.04991e58 −0.999932
\(50\) −1.36120e58 −0.330718
\(51\) 7.58578e57 0.0930742
\(52\) 6.91804e59 4.34378
\(53\) −2.46445e59 −0.802051 −0.401026 0.916067i \(-0.631346\pi\)
−0.401026 + 0.916067i \(0.631346\pi\)
\(54\) −7.26540e59 −1.24072
\(55\) −3.83441e58 −0.0347685
\(56\) 6.07970e58 0.0296070
\(57\) −6.17680e59 −0.163336
\(58\) −2.84352e60 −0.412658
\(59\) −7.33567e60 −0.590263 −0.295132 0.955457i \(-0.595363\pi\)
−0.295132 + 0.955457i \(0.595363\pi\)
\(60\) 2.28094e61 1.02777
\(61\) −4.55049e61 −1.15926 −0.579628 0.814881i \(-0.696802\pi\)
−0.579628 + 0.814881i \(0.696802\pi\)
\(62\) −6.22497e61 −0.904949
\(63\) 8.76606e59 0.00733763
\(64\) 9.88976e62 4.80814
\(65\) −5.82938e62 −1.66001
\(66\) 1.25725e61 0.0211424
\(67\) −9.77457e62 −0.978401 −0.489201 0.872171i \(-0.662711\pi\)
−0.489201 + 0.872171i \(0.662711\pi\)
\(68\) −1.30536e63 −0.783740
\(69\) −8.50284e62 −0.308511
\(70\) −7.92359e61 −0.0175001
\(71\) −1.10646e64 −1.49804 −0.749018 0.662550i \(-0.769474\pi\)
−0.749018 + 0.662550i \(0.769474\pi\)
\(72\) 3.79986e64 3.17539
\(73\) 3.21128e63 0.166740 0.0833699 0.996519i \(-0.473432\pi\)
0.0833699 + 0.996519i \(0.473432\pi\)
\(74\) −5.86072e64 −1.90308
\(75\) −2.77868e63 −0.0567839
\(76\) 1.06290e65 1.37538
\(77\) −3.22689e61 −0.000265983 0
\(78\) 1.91137e65 1.00944
\(79\) 3.60745e65 1.22762 0.613812 0.789453i \(-0.289635\pi\)
0.613812 + 0.789453i \(0.289635\pi\)
\(80\) −2.04735e66 −4.51427
\(81\) 4.69295e65 0.674082
\(82\) −4.94112e65 −0.464780
\(83\) 1.23807e66 0.766569 0.383285 0.923630i \(-0.374793\pi\)
0.383285 + 0.923630i \(0.374793\pi\)
\(84\) 1.91955e64 0.00786257
\(85\) 1.09994e66 0.299513
\(86\) 1.09419e67 1.99020
\(87\) −5.80460e65 −0.0708530
\(88\) −1.39877e66 −0.115105
\(89\) −1.50302e67 −0.837545 −0.418773 0.908091i \(-0.637540\pi\)
−0.418773 + 0.908091i \(0.637540\pi\)
\(90\) −4.95232e67 −1.87690
\(91\) −4.90578e65 −0.0126993
\(92\) 1.46316e68 2.59784
\(93\) −1.27073e67 −0.155379
\(94\) −2.52836e68 −2.13761
\(95\) −8.95636e67 −0.525614
\(96\) 3.77193e68 1.54243
\(97\) −4.11315e68 −1.17639 −0.588194 0.808720i \(-0.700161\pi\)
−0.588194 + 0.808720i \(0.700161\pi\)
\(98\) 9.74596e68 1.95670
\(99\) −2.01684e67 −0.0285270
\(100\) 4.78154e68 0.478154
\(101\) −1.18761e68 −0.0842530 −0.0421265 0.999112i \(-0.513413\pi\)
−0.0421265 + 0.999112i \(0.513413\pi\)
\(102\) −3.60653e68 −0.182131
\(103\) 4.66232e69 1.68158 0.840791 0.541360i \(-0.182090\pi\)
0.840791 + 0.541360i \(0.182090\pi\)
\(104\) −2.12653e70 −5.49567
\(105\) −1.61748e67 −0.00300475
\(106\) 1.17168e70 1.56948
\(107\) 1.24749e70 1.20864 0.604318 0.796743i \(-0.293446\pi\)
0.604318 + 0.796743i \(0.293446\pi\)
\(108\) 2.55214e70 1.79385
\(109\) −2.39650e70 −1.22564 −0.612820 0.790222i \(-0.709965\pi\)
−0.612820 + 0.790222i \(0.709965\pi\)
\(110\) 1.82301e69 0.0680363
\(111\) −1.19637e70 −0.326757
\(112\) −1.72297e69 −0.0345347
\(113\) 1.93197e70 0.284966 0.142483 0.989797i \(-0.454491\pi\)
0.142483 + 0.989797i \(0.454491\pi\)
\(114\) 2.93666e70 0.319621
\(115\) −1.23291e71 −0.992787
\(116\) 9.98852e70 0.596624
\(117\) −3.06615e71 −1.36201
\(118\) 3.48762e71 1.15505
\(119\) 9.25665e68 0.00229131
\(120\) −7.01135e71 −1.30032
\(121\) −7.17209e71 −0.998966
\(122\) 2.16346e72 2.26847
\(123\) −1.00865e71 −0.0798023
\(124\) 2.18667e72 1.30838
\(125\) 1.98108e72 0.898475
\(126\) −4.16768e70 −0.0143585
\(127\) −1.49058e72 −0.390956 −0.195478 0.980708i \(-0.562626\pi\)
−0.195478 + 0.980708i \(0.562626\pi\)
\(128\) −2.40774e73 −4.81799
\(129\) 2.23362e72 0.341716
\(130\) 2.77148e73 3.24837
\(131\) −1.53034e73 −1.37698 −0.688492 0.725244i \(-0.741727\pi\)
−0.688492 + 0.725244i \(0.741727\pi\)
\(132\) −4.41637e71 −0.0305679
\(133\) −7.53733e70 −0.00402102
\(134\) 4.64716e73 1.91457
\(135\) −2.15052e73 −0.685534
\(136\) 4.01252e73 0.991573
\(137\) −6.90072e73 −1.32445 −0.662223 0.749306i \(-0.730387\pi\)
−0.662223 + 0.749306i \(0.730387\pi\)
\(138\) 4.04253e73 0.603705
\(139\) −1.02770e74 −1.19634 −0.598169 0.801370i \(-0.704105\pi\)
−0.598169 + 0.801370i \(0.704105\pi\)
\(140\) 2.78335e72 0.0253017
\(141\) −5.16126e73 −0.367025
\(142\) 5.26047e74 2.93141
\(143\) 1.12869e73 0.0493720
\(144\) −1.07687e75 −3.70389
\(145\) −8.41667e73 −0.228005
\(146\) −1.52675e74 −0.326283
\(147\) 1.98949e74 0.335964
\(148\) 2.05871e75 2.75148
\(149\) −1.83242e74 −0.194133 −0.0970663 0.995278i \(-0.530946\pi\)
−0.0970663 + 0.995278i \(0.530946\pi\)
\(150\) 1.32108e74 0.111117
\(151\) 1.98978e75 1.33076 0.665382 0.746503i \(-0.268269\pi\)
0.665382 + 0.746503i \(0.268269\pi\)
\(152\) −3.26724e75 −1.74011
\(153\) 5.78549e74 0.245746
\(154\) 1.53417e72 0.000520486 0
\(155\) −1.84256e75 −0.500009
\(156\) −6.71412e75 −1.45945
\(157\) 3.13434e75 0.546523 0.273261 0.961940i \(-0.411898\pi\)
0.273261 + 0.961940i \(0.411898\pi\)
\(158\) −1.71510e76 −2.40226
\(159\) 2.39180e75 0.269479
\(160\) 5.46930e76 4.96355
\(161\) −1.03757e74 −0.00759495
\(162\) −2.23118e76 −1.31907
\(163\) −2.16359e76 −1.03444 −0.517218 0.855854i \(-0.673032\pi\)
−0.517218 + 0.855854i \(0.673032\pi\)
\(164\) 1.73568e76 0.671983
\(165\) 3.72139e74 0.0116818
\(166\) −5.88620e76 −1.50005
\(167\) 5.73499e76 1.18799 0.593997 0.804467i \(-0.297549\pi\)
0.593997 + 0.804467i \(0.297549\pi\)
\(168\) −5.90048e74 −0.00994758
\(169\) 9.87987e76 1.35725
\(170\) −5.22947e76 −0.586097
\(171\) −4.71090e76 −0.431258
\(172\) −3.84361e77 −2.87745
\(173\) 2.41165e77 1.47817 0.739085 0.673613i \(-0.235258\pi\)
0.739085 + 0.673613i \(0.235258\pi\)
\(174\) 2.75970e76 0.138648
\(175\) −3.39072e74 −0.00139791
\(176\) 3.96409e76 0.134263
\(177\) 7.11944e76 0.198321
\(178\) 7.14584e77 1.63894
\(179\) −5.78963e77 −1.09451 −0.547257 0.836965i \(-0.684328\pi\)
−0.547257 + 0.836965i \(0.684328\pi\)
\(180\) 1.73962e78 2.71364
\(181\) −1.16858e78 −1.50573 −0.752863 0.658177i \(-0.771328\pi\)
−0.752863 + 0.658177i \(0.771328\pi\)
\(182\) 2.33237e76 0.0248505
\(183\) 4.41636e77 0.389495
\(184\) −4.49760e78 −3.28674
\(185\) −1.73474e78 −1.05150
\(186\) 6.04148e77 0.304051
\(187\) −2.12971e76 −0.00890809
\(188\) 8.88146e78 3.09057
\(189\) −1.80980e76 −0.00524442
\(190\) 4.25815e78 1.02854
\(191\) −5.94585e78 −1.19829 −0.599146 0.800640i \(-0.704493\pi\)
−0.599146 + 0.800640i \(0.704493\pi\)
\(192\) −9.59824e78 −1.61547
\(193\) 1.93367e78 0.272055 0.136027 0.990705i \(-0.456567\pi\)
0.136027 + 0.990705i \(0.456567\pi\)
\(194\) 1.95553e79 2.30200
\(195\) 5.65754e78 0.557742
\(196\) −3.42350e79 −2.82902
\(197\) 9.34495e78 0.647877 0.323938 0.946078i \(-0.394993\pi\)
0.323938 + 0.946078i \(0.394993\pi\)
\(198\) 9.58871e77 0.0558227
\(199\) 2.69839e78 0.132030 0.0660152 0.997819i \(-0.478971\pi\)
0.0660152 + 0.997819i \(0.478971\pi\)
\(200\) −1.46979e79 −0.604952
\(201\) 9.48645e78 0.328730
\(202\) 5.64627e78 0.164869
\(203\) −7.08314e76 −0.00174427
\(204\) 1.26688e79 0.263326
\(205\) −1.46255e79 −0.256804
\(206\) −2.21662e80 −3.29058
\(207\) −6.48490e79 −0.814567
\(208\) 6.02652e80 6.41035
\(209\) 1.73414e78 0.0156328
\(210\) 7.69003e77 0.00587980
\(211\) 7.71421e79 0.500665 0.250332 0.968160i \(-0.419460\pi\)
0.250332 + 0.968160i \(0.419460\pi\)
\(212\) −4.11580e80 −2.26917
\(213\) 1.07384e80 0.503321
\(214\) −5.93096e80 −2.36510
\(215\) 3.23875e80 1.09964
\(216\) −7.84500e80 −2.26954
\(217\) −1.55063e78 −0.00382513
\(218\) 1.13937e81 2.39838
\(219\) −3.11662e79 −0.0560224
\(220\) −6.40374e79 −0.0983674
\(221\) −3.23775e80 −0.425314
\(222\) 5.68796e80 0.639409
\(223\) 1.62026e81 1.55980 0.779898 0.625907i \(-0.215271\pi\)
0.779898 + 0.625907i \(0.215271\pi\)
\(224\) 4.60275e79 0.0379718
\(225\) −2.11923e80 −0.149928
\(226\) −9.18520e80 −0.557632
\(227\) −2.43804e81 −1.27101 −0.635505 0.772097i \(-0.719208\pi\)
−0.635505 + 0.772097i \(0.719208\pi\)
\(228\) −1.03157e81 −0.462111
\(229\) −1.14930e81 −0.442701 −0.221351 0.975194i \(-0.571047\pi\)
−0.221351 + 0.975194i \(0.571047\pi\)
\(230\) 5.86167e81 1.94272
\(231\) 3.13177e77 8.93670e−5 0
\(232\) −3.07036e81 −0.754838
\(233\) −4.64743e81 −0.984994 −0.492497 0.870314i \(-0.663916\pi\)
−0.492497 + 0.870314i \(0.663916\pi\)
\(234\) 1.45775e82 2.66524
\(235\) −7.48382e81 −1.18109
\(236\) −1.22511e82 −1.66998
\(237\) −3.50111e81 −0.412465
\(238\) −4.40092e79 −0.00448372
\(239\) 1.79106e81 0.157900 0.0789500 0.996879i \(-0.474843\pi\)
0.0789500 + 0.996879i \(0.474843\pi\)
\(240\) 1.98700e82 1.51674
\(241\) 2.19407e82 1.45098 0.725490 0.688232i \(-0.241613\pi\)
0.725490 + 0.688232i \(0.241613\pi\)
\(242\) 3.40985e82 1.95481
\(243\) −1.73054e82 −0.860528
\(244\) −7.59965e82 −3.27978
\(245\) 2.88475e82 1.08113
\(246\) 4.79547e81 0.156160
\(247\) 2.63637e82 0.746383
\(248\) −6.72157e82 −1.65534
\(249\) −1.20158e82 −0.257557
\(250\) −9.41870e82 −1.75817
\(251\) 5.39936e82 0.878211 0.439105 0.898436i \(-0.355295\pi\)
0.439105 + 0.898436i \(0.355295\pi\)
\(252\) 1.46399e81 0.0207597
\(253\) 2.38717e81 0.0295274
\(254\) 7.08673e82 0.765038
\(255\) −1.06751e82 −0.100632
\(256\) 5.60930e83 4.61987
\(257\) −1.14417e83 −0.823752 −0.411876 0.911240i \(-0.635126\pi\)
−0.411876 + 0.911240i \(0.635126\pi\)
\(258\) −1.06194e83 −0.668682
\(259\) −1.45989e81 −0.00804413
\(260\) −9.73547e83 −4.69652
\(261\) −4.42702e82 −0.187074
\(262\) 7.27575e83 2.69453
\(263\) −7.65214e82 −0.248490 −0.124245 0.992252i \(-0.539651\pi\)
−0.124245 + 0.992252i \(0.539651\pi\)
\(264\) 1.35754e82 0.0386739
\(265\) 3.46811e83 0.867182
\(266\) 3.58349e81 0.00786847
\(267\) 1.45871e83 0.281404
\(268\) −1.63242e84 −2.76810
\(269\) 2.43965e83 0.363810 0.181905 0.983316i \(-0.441774\pi\)
0.181905 + 0.983316i \(0.441774\pi\)
\(270\) 1.02243e84 1.34148
\(271\) −9.89400e82 −0.114270 −0.0571349 0.998366i \(-0.518197\pi\)
−0.0571349 + 0.998366i \(0.518197\pi\)
\(272\) −1.13714e84 −1.15661
\(273\) 4.76117e81 0.00426680
\(274\) 3.28083e84 2.59173
\(275\) 7.80114e81 0.00543476
\(276\) −1.42003e84 −0.872842
\(277\) −2.18243e84 −1.18410 −0.592050 0.805901i \(-0.701681\pi\)
−0.592050 + 0.805901i \(0.701681\pi\)
\(278\) 4.88600e84 2.34104
\(279\) −9.69155e83 −0.410250
\(280\) −8.55570e82 −0.0320113
\(281\) 2.98947e81 0.000989067 0 0.000494533 1.00000i \(-0.499843\pi\)
0.000494533 1.00000i \(0.499843\pi\)
\(282\) 2.45383e84 0.718209
\(283\) −2.71964e84 −0.704498 −0.352249 0.935906i \(-0.614583\pi\)
−0.352249 + 0.935906i \(0.614583\pi\)
\(284\) −1.84786e85 −4.23826
\(285\) 8.69235e83 0.176600
\(286\) −5.36615e83 −0.0966129
\(287\) −1.23082e82 −0.00196458
\(288\) 2.87676e85 4.07252
\(289\) −7.35022e84 −0.923261
\(290\) 4.00156e84 0.446168
\(291\) 3.99191e84 0.395251
\(292\) 5.36306e84 0.471742
\(293\) 9.86994e84 0.771581 0.385791 0.922586i \(-0.373929\pi\)
0.385791 + 0.922586i \(0.373929\pi\)
\(294\) −9.45867e84 −0.657427
\(295\) 1.03232e85 0.638196
\(296\) −6.32825e85 −3.48113
\(297\) 4.16385e83 0.0203891
\(298\) 8.71193e84 0.379886
\(299\) 3.62916e85 1.40978
\(300\) −4.64060e84 −0.160654
\(301\) 2.72561e83 0.00841239
\(302\) −9.46008e85 −2.60409
\(303\) 1.15260e84 0.0283079
\(304\) 9.25927e85 2.02973
\(305\) 6.40372e85 1.25339
\(306\) −2.75061e85 −0.480884
\(307\) −3.27318e85 −0.511324 −0.255662 0.966766i \(-0.582293\pi\)
−0.255662 + 0.966766i \(0.582293\pi\)
\(308\) −5.38914e82 −0.000752523 0
\(309\) −4.52489e85 −0.564990
\(310\) 8.76014e85 0.978436
\(311\) −1.76892e86 −1.76797 −0.883986 0.467513i \(-0.845150\pi\)
−0.883986 + 0.467513i \(0.845150\pi\)
\(312\) 2.06384e86 1.84647
\(313\) −3.41545e85 −0.273633 −0.136816 0.990596i \(-0.543687\pi\)
−0.136816 + 0.990596i \(0.543687\pi\)
\(314\) −1.49017e86 −1.06946
\(315\) −1.23361e84 −0.00793349
\(316\) 6.02469e86 3.47320
\(317\) 7.71691e85 0.398932 0.199466 0.979905i \(-0.436079\pi\)
0.199466 + 0.979905i \(0.436079\pi\)
\(318\) −1.13714e86 −0.527326
\(319\) 1.62964e84 0.00678130
\(320\) −1.39174e87 −5.19859
\(321\) −1.21071e86 −0.406086
\(322\) 4.93295e84 0.0148621
\(323\) −4.97454e85 −0.134668
\(324\) 7.83755e86 1.90712
\(325\) 1.18599e86 0.259481
\(326\) 1.02864e87 2.02422
\(327\) 2.32586e86 0.411799
\(328\) −5.33530e86 −0.850180
\(329\) −6.29809e84 −0.00903546
\(330\) −1.76927e85 −0.0228593
\(331\) −1.76756e83 −0.000205735 0 −0.000102867 1.00000i \(-0.500033\pi\)
−0.000102867 1.00000i \(0.500033\pi\)
\(332\) 2.06767e87 2.16879
\(333\) −9.12445e86 −0.862742
\(334\) −2.72660e87 −2.32471
\(335\) 1.37553e87 1.05785
\(336\) 1.67218e85 0.0116032
\(337\) −5.65069e86 −0.353891 −0.176946 0.984221i \(-0.556622\pi\)
−0.176946 + 0.984221i \(0.556622\pi\)
\(338\) −4.69722e87 −2.65592
\(339\) −1.87502e86 −0.0957449
\(340\) 1.83697e87 0.847384
\(341\) 3.56758e85 0.0148712
\(342\) 2.23972e87 0.843902
\(343\) 4.85556e85 0.0165422
\(344\) 1.18148e88 3.64050
\(345\) 1.19657e87 0.333564
\(346\) −1.14658e88 −2.89254
\(347\) −6.30525e87 −1.43991 −0.719955 0.694021i \(-0.755838\pi\)
−0.719955 + 0.694021i \(0.755838\pi\)
\(348\) −9.69409e86 −0.200458
\(349\) 4.26563e87 0.798925 0.399463 0.916750i \(-0.369197\pi\)
0.399463 + 0.916750i \(0.369197\pi\)
\(350\) 1.61206e85 0.00273548
\(351\) 6.33022e87 0.973471
\(352\) −1.05897e87 −0.147626
\(353\) 5.91830e87 0.748117 0.374058 0.927405i \(-0.377966\pi\)
0.374058 + 0.927405i \(0.377966\pi\)
\(354\) −3.38482e87 −0.388081
\(355\) 1.55707e88 1.61968
\(356\) −2.51014e88 −2.36959
\(357\) −8.98379e84 −0.000769850 0
\(358\) 2.75258e88 2.14179
\(359\) −1.96053e88 −1.38553 −0.692764 0.721164i \(-0.743607\pi\)
−0.692764 + 0.721164i \(0.743607\pi\)
\(360\) −5.34739e88 −3.43325
\(361\) −1.30889e88 −0.763671
\(362\) 5.55580e88 2.94646
\(363\) 6.96068e87 0.335640
\(364\) −8.19299e86 −0.0359290
\(365\) −4.51910e87 −0.180280
\(366\) −2.09968e88 −0.762178
\(367\) −4.95070e88 −1.63564 −0.817819 0.575475i \(-0.804817\pi\)
−0.817819 + 0.575475i \(0.804817\pi\)
\(368\) 1.27461e89 3.83378
\(369\) −7.69275e87 −0.210703
\(370\) 8.24754e88 2.05762
\(371\) 2.91863e86 0.00663405
\(372\) −2.12221e88 −0.439599
\(373\) −3.78408e88 −0.714505 −0.357253 0.934008i \(-0.616286\pi\)
−0.357253 + 0.934008i \(0.616286\pi\)
\(374\) 1.01253e87 0.0174317
\(375\) −1.92268e88 −0.301876
\(376\) −2.73006e89 −3.91013
\(377\) 2.47751e88 0.323771
\(378\) 8.60437e86 0.0102625
\(379\) 1.13681e89 1.23776 0.618880 0.785485i \(-0.287587\pi\)
0.618880 + 0.785485i \(0.287587\pi\)
\(380\) −1.49578e89 −1.48707
\(381\) 1.44665e88 0.131356
\(382\) 2.82685e89 2.34486
\(383\) −8.73915e87 −0.0662387 −0.0331193 0.999451i \(-0.510544\pi\)
−0.0331193 + 0.999451i \(0.510544\pi\)
\(384\) 2.33677e89 1.61878
\(385\) 4.54107e85 0.000287583 0
\(386\) −9.19332e88 −0.532366
\(387\) 1.70353e89 0.902239
\(388\) −6.86926e89 −3.32825
\(389\) 2.58092e89 1.14423 0.572115 0.820173i \(-0.306123\pi\)
0.572115 + 0.820173i \(0.306123\pi\)
\(390\) −2.68978e89 −1.09141
\(391\) −6.84783e88 −0.254363
\(392\) 1.05234e90 3.57922
\(393\) 1.48523e89 0.462649
\(394\) −4.44290e89 −1.26779
\(395\) −5.07660e89 −1.32731
\(396\) −3.36826e88 −0.0807089
\(397\) −4.90688e88 −0.107779 −0.0538893 0.998547i \(-0.517162\pi\)
−0.0538893 + 0.998547i \(0.517162\pi\)
\(398\) −1.28290e89 −0.258362
\(399\) 7.31515e86 0.00135101
\(400\) 4.16535e89 0.705638
\(401\) −1.24261e89 −0.193132 −0.0965662 0.995327i \(-0.530786\pi\)
−0.0965662 + 0.995327i \(0.530786\pi\)
\(402\) −4.51017e89 −0.643271
\(403\) 5.42371e89 0.710023
\(404\) −1.98339e89 −0.238369
\(405\) −6.60419e89 −0.728821
\(406\) 3.36756e87 0.00341324
\(407\) 3.35882e88 0.0312737
\(408\) −3.89424e89 −0.333156
\(409\) −6.64009e89 −0.522060 −0.261030 0.965331i \(-0.584062\pi\)
−0.261030 + 0.965331i \(0.584062\pi\)
\(410\) 6.95343e89 0.502523
\(411\) 6.69730e89 0.444997
\(412\) 7.78641e90 4.75755
\(413\) 8.68759e87 0.00488228
\(414\) 3.08314e90 1.59397
\(415\) −1.74229e90 −0.828819
\(416\) −1.60993e91 −7.04834
\(417\) 9.97402e89 0.401954
\(418\) −8.24466e88 −0.0305908
\(419\) 2.42519e90 0.828633 0.414317 0.910133i \(-0.364021\pi\)
0.414317 + 0.910133i \(0.364021\pi\)
\(420\) −2.70130e88 −0.00850106
\(421\) 8.45515e89 0.245126 0.122563 0.992461i \(-0.460889\pi\)
0.122563 + 0.992461i \(0.460889\pi\)
\(422\) −3.66759e90 −0.979719
\(423\) −3.93636e90 −0.969064
\(424\) 1.26515e91 2.87091
\(425\) −2.23783e89 −0.0468176
\(426\) −5.10541e90 −0.984916
\(427\) 5.38912e88 0.00958862
\(428\) 2.08339e91 3.41948
\(429\) −1.09542e89 −0.0165883
\(430\) −1.53981e91 −2.15182
\(431\) −1.00762e91 −1.29966 −0.649832 0.760078i \(-0.725161\pi\)
−0.649832 + 0.760078i \(0.725161\pi\)
\(432\) 2.22325e91 2.64728
\(433\) 2.48563e90 0.273278 0.136639 0.990621i \(-0.456370\pi\)
0.136639 + 0.990621i \(0.456370\pi\)
\(434\) 7.37219e88 0.00748516
\(435\) 8.16857e89 0.0766067
\(436\) −4.00232e91 −3.46759
\(437\) 5.57592e90 0.446382
\(438\) 1.48174e90 0.109627
\(439\) −7.87845e90 −0.538784 −0.269392 0.963031i \(-0.586823\pi\)
−0.269392 + 0.963031i \(0.586823\pi\)
\(440\) 1.96844e90 0.124453
\(441\) 1.51733e91 0.887052
\(442\) 1.53933e91 0.832270
\(443\) 2.92208e91 1.46138 0.730692 0.682708i \(-0.239198\pi\)
0.730692 + 0.682708i \(0.239198\pi\)
\(444\) −1.99803e91 −0.924463
\(445\) 2.11513e91 0.905559
\(446\) −7.70327e91 −3.05227
\(447\) 1.77840e90 0.0652260
\(448\) −1.17124e90 −0.0397698
\(449\) −1.09047e91 −0.342858 −0.171429 0.985196i \(-0.554838\pi\)
−0.171429 + 0.985196i \(0.554838\pi\)
\(450\) 1.00755e91 0.293384
\(451\) 2.83179e89 0.00763784
\(452\) 3.22652e91 0.806228
\(453\) −1.93113e91 −0.447119
\(454\) 1.15913e92 2.48716
\(455\) 6.90369e89 0.0137306
\(456\) 3.17093e91 0.584655
\(457\) −1.22143e91 −0.208813 −0.104407 0.994535i \(-0.533294\pi\)
−0.104407 + 0.994535i \(0.533294\pi\)
\(458\) 5.46417e91 0.866294
\(459\) −1.19444e91 −0.175642
\(460\) −2.05905e92 −2.80880
\(461\) −2.42324e91 −0.306700 −0.153350 0.988172i \(-0.549006\pi\)
−0.153350 + 0.988172i \(0.549006\pi\)
\(462\) −1.48895e88 −0.000174877 0
\(463\) −1.70450e92 −1.85803 −0.929015 0.370042i \(-0.879343\pi\)
−0.929015 + 0.370042i \(0.879343\pi\)
\(464\) 8.70132e91 0.880470
\(465\) 1.78825e91 0.167997
\(466\) 2.20954e92 1.92747
\(467\) −1.90134e91 −0.154038 −0.0770188 0.997030i \(-0.524540\pi\)
−0.0770188 + 0.997030i \(0.524540\pi\)
\(468\) −5.12069e92 −3.85342
\(469\) 1.15760e90 0.00809271
\(470\) 3.55805e92 2.31119
\(471\) −3.04195e91 −0.183625
\(472\) 3.76585e92 2.11283
\(473\) −6.27090e90 −0.0327055
\(474\) 1.66454e92 0.807128
\(475\) 1.82218e91 0.0821602
\(476\) 1.54593e90 0.00648259
\(477\) 1.82417e92 0.711510
\(478\) −8.51528e91 −0.308984
\(479\) −1.43905e92 −0.485847 −0.242923 0.970045i \(-0.578106\pi\)
−0.242923 + 0.970045i \(0.578106\pi\)
\(480\) −5.30808e92 −1.66769
\(481\) 5.10634e92 1.49315
\(482\) −1.04313e93 −2.83933
\(483\) 1.00699e90 0.00255180
\(484\) −1.19779e93 −2.82628
\(485\) 5.78827e92 1.27192
\(486\) 8.22756e92 1.68391
\(487\) −5.62055e91 −0.107159 −0.0535796 0.998564i \(-0.517063\pi\)
−0.0535796 + 0.998564i \(0.517063\pi\)
\(488\) 2.33604e93 4.14951
\(489\) 2.09982e92 0.347557
\(490\) −1.37151e93 −2.11560
\(491\) −9.59231e92 −1.37915 −0.689576 0.724214i \(-0.742203\pi\)
−0.689576 + 0.724214i \(0.742203\pi\)
\(492\) −1.68452e92 −0.225777
\(493\) −4.67478e91 −0.0584174
\(494\) −1.25342e93 −1.46055
\(495\) 2.83821e91 0.0308436
\(496\) 1.90487e93 1.93085
\(497\) 1.31037e91 0.0123908
\(498\) 5.71269e92 0.503998
\(499\) −8.50645e92 −0.700293 −0.350146 0.936695i \(-0.613868\pi\)
−0.350146 + 0.936695i \(0.613868\pi\)
\(500\) 3.30854e93 2.54198
\(501\) −5.56594e92 −0.399151
\(502\) −2.56703e93 −1.71852
\(503\) 9.92271e92 0.620204 0.310102 0.950703i \(-0.399637\pi\)
0.310102 + 0.950703i \(0.399637\pi\)
\(504\) −4.50015e91 −0.0262648
\(505\) 1.67127e92 0.0910948
\(506\) −1.13494e92 −0.0577803
\(507\) −9.58864e92 −0.456018
\(508\) −2.48938e93 −1.10610
\(509\) 4.21070e93 1.74820 0.874099 0.485747i \(-0.161452\pi\)
0.874099 + 0.485747i \(0.161452\pi\)
\(510\) 5.07532e92 0.196921
\(511\) −3.80310e90 −0.00137916
\(512\) −1.24557e94 −4.22235
\(513\) 9.72587e92 0.308233
\(514\) 5.43974e93 1.61195
\(515\) −6.56109e93 −1.81814
\(516\) 3.73031e93 0.966786
\(517\) 1.44902e92 0.0351278
\(518\) 6.94081e91 0.0157410
\(519\) −2.34056e93 −0.496646
\(520\) 2.99257e94 5.94195
\(521\) 7.50601e93 1.39479 0.697393 0.716689i \(-0.254343\pi\)
0.697393 + 0.716689i \(0.254343\pi\)
\(522\) 2.10475e93 0.366074
\(523\) −9.56209e93 −1.55684 −0.778421 0.627742i \(-0.783979\pi\)
−0.778421 + 0.627742i \(0.783979\pi\)
\(524\) −2.55578e94 −3.89578
\(525\) 3.29078e90 0.000469680 0
\(526\) 3.63808e93 0.486255
\(527\) −1.02339e93 −0.128108
\(528\) −3.84724e92 −0.0451107
\(529\) −1.42809e93 −0.156868
\(530\) −1.64886e94 −1.69693
\(531\) 5.42982e93 0.523630
\(532\) −1.25879e92 −0.0113763
\(533\) 4.30511e93 0.364666
\(534\) −6.93520e93 −0.550662
\(535\) −1.75553e94 −1.30678
\(536\) 5.01788e94 3.50215
\(537\) 5.61897e93 0.367743
\(538\) −1.15989e94 −0.711917
\(539\) −5.58548e92 −0.0321550
\(540\) −3.59152e94 −1.93952
\(541\) 1.58147e94 0.801226 0.400613 0.916247i \(-0.368797\pi\)
0.400613 + 0.916247i \(0.368797\pi\)
\(542\) 4.70393e93 0.223607
\(543\) 1.13413e94 0.505905
\(544\) 3.03776e94 1.27172
\(545\) 3.37249e94 1.32517
\(546\) −2.26362e92 −0.00834943
\(547\) −2.71305e94 −0.939495 −0.469748 0.882801i \(-0.655655\pi\)
−0.469748 + 0.882801i \(0.655655\pi\)
\(548\) −1.15247e95 −3.74714
\(549\) 3.36825e94 1.02839
\(550\) −3.70892e92 −0.0106349
\(551\) 3.80649e93 0.102517
\(552\) 4.36502e94 1.10430
\(553\) −4.27227e92 −0.0101541
\(554\) 1.03760e95 2.31709
\(555\) 1.68361e94 0.353291
\(556\) −1.71632e95 −3.38469
\(557\) 3.94686e94 0.731555 0.365777 0.930702i \(-0.380803\pi\)
0.365777 + 0.930702i \(0.380803\pi\)
\(558\) 4.60768e94 0.802792
\(559\) −9.53351e94 −1.56151
\(560\) 2.42466e93 0.0373391
\(561\) 2.06693e92 0.00299300
\(562\) −1.42129e92 −0.00193544
\(563\) −1.43702e95 −1.84044 −0.920222 0.391396i \(-0.871992\pi\)
−0.920222 + 0.391396i \(0.871992\pi\)
\(564\) −8.61966e94 −1.03839
\(565\) −2.71877e94 −0.308107
\(566\) 1.29301e95 1.37859
\(567\) −5.55783e92 −0.00557557
\(568\) 5.68012e95 5.36216
\(569\) 6.44138e94 0.572276 0.286138 0.958188i \(-0.407628\pi\)
0.286138 + 0.958188i \(0.407628\pi\)
\(570\) −4.13263e94 −0.345577
\(571\) −1.65144e95 −1.29992 −0.649959 0.759969i \(-0.725214\pi\)
−0.649959 + 0.759969i \(0.725214\pi\)
\(572\) 1.88499e94 0.139684
\(573\) 5.77058e94 0.402611
\(574\) 5.85174e92 0.00384436
\(575\) 2.50837e94 0.155185
\(576\) −7.32034e95 −4.26536
\(577\) −3.57373e94 −0.196136 −0.0980678 0.995180i \(-0.531266\pi\)
−0.0980678 + 0.995180i \(0.531266\pi\)
\(578\) 3.49454e95 1.80667
\(579\) −1.87667e94 −0.0914068
\(580\) −1.40564e95 −0.645073
\(581\) −1.46624e93 −0.00634057
\(582\) −1.89789e95 −0.773441
\(583\) −6.71498e93 −0.0257917
\(584\) −1.64854e95 −0.596839
\(585\) 4.31487e95 1.47262
\(586\) −4.69250e95 −1.50986
\(587\) 5.28696e95 1.60395 0.801976 0.597356i \(-0.203782\pi\)
0.801976 + 0.597356i \(0.203782\pi\)
\(588\) 3.32258e95 0.950513
\(589\) 8.33309e94 0.224817
\(590\) −4.90798e95 −1.24885
\(591\) −9.06949e94 −0.217678
\(592\) 1.79341e96 4.06051
\(593\) −4.37868e95 −0.935312 −0.467656 0.883910i \(-0.654901\pi\)
−0.467656 + 0.883910i \(0.654901\pi\)
\(594\) −1.97963e94 −0.0398981
\(595\) −1.30265e93 −0.00247738
\(596\) −3.06027e95 −0.549242
\(597\) −2.61885e94 −0.0443605
\(598\) −1.72542e96 −2.75870
\(599\) −3.20966e95 −0.484433 −0.242217 0.970222i \(-0.577875\pi\)
−0.242217 + 0.970222i \(0.577875\pi\)
\(600\) 1.42647e95 0.203256
\(601\) −5.87229e95 −0.790020 −0.395010 0.918677i \(-0.629259\pi\)
−0.395010 + 0.918677i \(0.629259\pi\)
\(602\) −1.29585e94 −0.0164617
\(603\) 7.23508e95 0.867952
\(604\) 3.32308e96 3.76501
\(605\) 1.00930e96 1.08009
\(606\) −5.47984e94 −0.0553939
\(607\) −1.99576e96 −1.90589 −0.952944 0.303145i \(-0.901963\pi\)
−0.952944 + 0.303145i \(0.901963\pi\)
\(608\) −2.47352e96 −2.23174
\(609\) 6.87435e92 0.000586050 0
\(610\) −3.04454e96 −2.45269
\(611\) 2.20292e96 1.67717
\(612\) 9.66217e95 0.695266
\(613\) −1.69286e96 −1.15142 −0.575711 0.817653i \(-0.695275\pi\)
−0.575711 + 0.817653i \(0.695275\pi\)
\(614\) 1.55618e96 1.00058
\(615\) 1.41943e95 0.0862827
\(616\) 1.65656e93 0.000952078 0
\(617\) 2.01970e96 1.09761 0.548807 0.835949i \(-0.315082\pi\)
0.548807 + 0.835949i \(0.315082\pi\)
\(618\) 2.15128e96 1.10559
\(619\) −1.55484e96 −0.755713 −0.377857 0.925864i \(-0.623339\pi\)
−0.377857 + 0.925864i \(0.623339\pi\)
\(620\) −3.07720e96 −1.41463
\(621\) 1.33884e96 0.582195
\(622\) 8.41005e96 3.45963
\(623\) 1.78001e94 0.00692764
\(624\) −5.84888e96 −2.15379
\(625\) −3.27291e96 −1.14044
\(626\) 1.62382e96 0.535454
\(627\) −1.68302e94 −0.00525241
\(628\) 5.23457e96 1.54623
\(629\) −9.63509e95 −0.269407
\(630\) 5.86499e94 0.0155245
\(631\) 1.41840e96 0.355456 0.177728 0.984080i \(-0.443125\pi\)
0.177728 + 0.984080i \(0.443125\pi\)
\(632\) −1.85192e97 −4.39423
\(633\) −7.48682e95 −0.168217
\(634\) −3.66887e96 −0.780645
\(635\) 2.09764e96 0.422704
\(636\) 3.99448e96 0.762412
\(637\) −8.49148e96 −1.53523
\(638\) −7.74785e94 −0.0132699
\(639\) 8.18994e96 1.32893
\(640\) 3.38831e97 5.20923
\(641\) −1.09579e97 −1.59635 −0.798173 0.602429i \(-0.794200\pi\)
−0.798173 + 0.602429i \(0.794200\pi\)
\(642\) 5.75614e96 0.794644
\(643\) 1.16589e96 0.152539 0.0762693 0.997087i \(-0.475699\pi\)
0.0762693 + 0.997087i \(0.475699\pi\)
\(644\) −1.73282e95 −0.0214877
\(645\) −3.14329e96 −0.369465
\(646\) 2.36506e96 0.263524
\(647\) 7.27773e96 0.768773 0.384387 0.923172i \(-0.374413\pi\)
0.384387 + 0.923172i \(0.374413\pi\)
\(648\) −2.40917e97 −2.41285
\(649\) −1.99878e95 −0.0189812
\(650\) −5.63860e96 −0.507762
\(651\) 1.50492e94 0.00128519
\(652\) −3.61336e97 −2.92664
\(653\) 2.36544e97 1.81722 0.908611 0.417644i \(-0.137144\pi\)
0.908611 + 0.417644i \(0.137144\pi\)
\(654\) −1.10579e97 −0.805824
\(655\) 2.15359e97 1.48880
\(656\) 1.51201e97 0.991681
\(657\) −2.37697e96 −0.147917
\(658\) 2.99432e95 0.0176809
\(659\) 4.12773e96 0.231294 0.115647 0.993290i \(-0.463106\pi\)
0.115647 + 0.993290i \(0.463106\pi\)
\(660\) 6.21498e95 0.0330502
\(661\) −1.44124e97 −0.727422 −0.363711 0.931512i \(-0.618490\pi\)
−0.363711 + 0.931512i \(0.618490\pi\)
\(662\) 8.40356e93 0.000402590 0
\(663\) 3.14231e96 0.142900
\(664\) −6.35577e97 −2.74391
\(665\) 1.06070e95 0.00434755
\(666\) 4.33807e97 1.68824
\(667\) 5.23992e96 0.193635
\(668\) 9.57784e97 3.36109
\(669\) −1.57250e97 −0.524071
\(670\) −6.53974e97 −2.07005
\(671\) −1.23989e96 −0.0372784
\(672\) −4.46708e95 −0.0127580
\(673\) −5.38065e97 −1.45987 −0.729936 0.683516i \(-0.760450\pi\)
−0.729936 + 0.683516i \(0.760450\pi\)
\(674\) 2.68652e97 0.692507
\(675\) 4.37525e96 0.107158
\(676\) 1.65001e98 3.83994
\(677\) −7.23414e97 −1.59984 −0.799922 0.600104i \(-0.795126\pi\)
−0.799922 + 0.600104i \(0.795126\pi\)
\(678\) 8.91445e96 0.187357
\(679\) 4.87118e95 0.00973032
\(680\) −5.64665e97 −1.07209
\(681\) 2.36617e97 0.427043
\(682\) −1.69614e96 −0.0291006
\(683\) −2.87542e97 −0.469015 −0.234507 0.972114i \(-0.575348\pi\)
−0.234507 + 0.972114i \(0.575348\pi\)
\(684\) −7.86753e97 −1.22012
\(685\) 9.71108e97 1.43200
\(686\) −2.30849e96 −0.0323703
\(687\) 1.11543e97 0.148742
\(688\) −3.34829e98 −4.24641
\(689\) −1.02086e98 −1.23142
\(690\) −5.68888e97 −0.652730
\(691\) −2.09622e97 −0.228794 −0.114397 0.993435i \(-0.536494\pi\)
−0.114397 + 0.993435i \(0.536494\pi\)
\(692\) 4.02763e98 4.18205
\(693\) 2.38853e94 0.000235957 0
\(694\) 2.99772e98 2.81767
\(695\) 1.44623e98 1.29349
\(696\) 2.97985e97 0.253616
\(697\) −8.12326e96 −0.0657960
\(698\) −2.02802e98 −1.56337
\(699\) 4.51044e97 0.330945
\(700\) −5.66275e95 −0.00395498
\(701\) 1.95600e97 0.130046 0.0650231 0.997884i \(-0.479288\pi\)
0.0650231 + 0.997884i \(0.479288\pi\)
\(702\) −3.00960e98 −1.90492
\(703\) 7.84548e97 0.472782
\(704\) 2.69470e97 0.154616
\(705\) 7.26322e97 0.396830
\(706\) −2.81375e98 −1.46394
\(707\) 1.40647e95 0.000696887 0
\(708\) 1.18900e98 0.561091
\(709\) 1.46385e98 0.657962 0.328981 0.944337i \(-0.393295\pi\)
0.328981 + 0.944337i \(0.393295\pi\)
\(710\) −7.40284e98 −3.16946
\(711\) −2.67021e98 −1.08904
\(712\) 7.71589e98 2.99796
\(713\) 1.14711e98 0.424636
\(714\) 4.27119e95 0.00150647
\(715\) −1.58835e97 −0.0533813
\(716\) −9.66909e98 −3.09661
\(717\) −1.73826e97 −0.0530523
\(718\) 9.32102e98 2.71125
\(719\) −2.66577e98 −0.739054 −0.369527 0.929220i \(-0.620480\pi\)
−0.369527 + 0.929220i \(0.620480\pi\)
\(720\) 1.51544e99 4.00467
\(721\) −5.52156e96 −0.0139090
\(722\) 6.22292e98 1.49438
\(723\) −2.12939e98 −0.487511
\(724\) −1.95160e99 −4.26002
\(725\) 1.71238e97 0.0356401
\(726\) −3.30934e98 −0.656792
\(727\) −9.09844e97 −0.172199 −0.0860993 0.996287i \(-0.527440\pi\)
−0.0860993 + 0.996287i \(0.527440\pi\)
\(728\) 2.51843e97 0.0454567
\(729\) −2.23620e98 −0.384955
\(730\) 2.14853e98 0.352779
\(731\) 1.79887e98 0.281741
\(732\) 7.37563e98 1.10196
\(733\) 1.09199e99 1.55644 0.778222 0.627989i \(-0.216122\pi\)
0.778222 + 0.627989i \(0.216122\pi\)
\(734\) 2.35373e99 3.20068
\(735\) −2.79972e98 −0.363246
\(736\) −3.40499e99 −4.21533
\(737\) −2.66332e97 −0.0314626
\(738\) 3.65739e98 0.412312
\(739\) 1.00500e99 1.08127 0.540634 0.841258i \(-0.318185\pi\)
0.540634 + 0.841258i \(0.318185\pi\)
\(740\) −2.89714e99 −2.97492
\(741\) −2.55866e98 −0.250775
\(742\) −1.38761e97 −0.0129818
\(743\) −1.61438e99 −1.44175 −0.720876 0.693064i \(-0.756260\pi\)
−0.720876 + 0.693064i \(0.756260\pi\)
\(744\) 6.52343e98 0.556173
\(745\) 2.57869e98 0.209897
\(746\) 1.79908e99 1.39817
\(747\) −9.16413e98 −0.680034
\(748\) −3.55676e97 −0.0252028
\(749\) −1.47739e97 −0.00999706
\(750\) 9.14107e98 0.590722
\(751\) −1.42488e98 −0.0879427 −0.0439714 0.999033i \(-0.514001\pi\)
−0.0439714 + 0.999033i \(0.514001\pi\)
\(752\) 7.73692e99 4.56092
\(753\) −5.24020e98 −0.295067
\(754\) −1.17789e99 −0.633568
\(755\) −2.80014e99 −1.43883
\(756\) −3.02249e97 −0.0148376
\(757\) 2.24957e99 1.05510 0.527548 0.849525i \(-0.323112\pi\)
0.527548 + 0.849525i \(0.323112\pi\)
\(758\) −5.40479e99 −2.42209
\(759\) −2.31680e97 −0.00992083
\(760\) 4.59784e99 1.88142
\(761\) 2.11733e99 0.827977 0.413989 0.910282i \(-0.364135\pi\)
0.413989 + 0.910282i \(0.364135\pi\)
\(762\) −6.87784e98 −0.257043
\(763\) 2.83816e97 0.0101377
\(764\) −9.92999e99 −3.39022
\(765\) −8.14167e98 −0.265701
\(766\) 4.15488e98 0.129618
\(767\) −3.03870e99 −0.906251
\(768\) −5.44396e99 −1.55222
\(769\) 5.07951e99 1.38472 0.692362 0.721550i \(-0.256570\pi\)
0.692362 + 0.721550i \(0.256570\pi\)
\(770\) −2.15897e96 −0.000562753 0
\(771\) 1.11044e99 0.276770
\(772\) 3.22937e99 0.769699
\(773\) 7.19171e99 1.63923 0.819614 0.572916i \(-0.194188\pi\)
0.819614 + 0.572916i \(0.194188\pi\)
\(774\) −8.09915e99 −1.76553
\(775\) 3.74870e98 0.0781578
\(776\) 2.11153e100 4.21084
\(777\) 1.41686e97 0.00270272
\(778\) −1.22705e100 −2.23907
\(779\) 6.61445e98 0.115465
\(780\) 9.44850e99 1.57797
\(781\) −3.01481e98 −0.0481726
\(782\) 3.25568e99 0.497748
\(783\) 9.13980e98 0.133708
\(784\) −2.98231e100 −4.17493
\(785\) −4.41083e99 −0.590904
\(786\) −7.06128e99 −0.905328
\(787\) 2.21935e99 0.272331 0.136166 0.990686i \(-0.456522\pi\)
0.136166 + 0.990686i \(0.456522\pi\)
\(788\) 1.56067e100 1.83298
\(789\) 7.42657e98 0.0834895
\(790\) 2.41359e100 2.59734
\(791\) −2.28801e97 −0.00235706
\(792\) 1.03536e99 0.102111
\(793\) −1.88498e100 −1.77984
\(794\) 2.33289e99 0.210905
\(795\) −3.36588e99 −0.291362
\(796\) 4.50650e99 0.373542
\(797\) −1.80947e100 −1.43628 −0.718139 0.695899i \(-0.755006\pi\)
−0.718139 + 0.695899i \(0.755006\pi\)
\(798\) −3.47786e97 −0.00264370
\(799\) −4.15666e99 −0.302608
\(800\) −1.11273e100 −0.775866
\(801\) 1.11252e100 0.742997
\(802\) 5.90779e99 0.377928
\(803\) 8.74990e97 0.00536188
\(804\) 1.58430e100 0.930047
\(805\) 1.46013e98 0.00821170
\(806\) −2.57861e100 −1.38940
\(807\) −2.36774e99 −0.122235
\(808\) 6.09670e99 0.301580
\(809\) 1.24685e100 0.591004 0.295502 0.955342i \(-0.404513\pi\)
0.295502 + 0.955342i \(0.404513\pi\)
\(810\) 3.13985e100 1.42618
\(811\) −9.08873e99 −0.395625 −0.197813 0.980240i \(-0.563384\pi\)
−0.197813 + 0.980240i \(0.563384\pi\)
\(812\) −1.18293e98 −0.00493489
\(813\) 9.60235e98 0.0383932
\(814\) −1.59689e99 −0.0611976
\(815\) 3.04473e100 1.11844
\(816\) 1.10362e100 0.388605
\(817\) −1.46475e100 −0.494426
\(818\) 3.15692e100 1.02159
\(819\) 3.63122e98 0.0112657
\(820\) −2.44255e100 −0.726552
\(821\) 1.37155e100 0.391176 0.195588 0.980686i \(-0.437338\pi\)
0.195588 + 0.980686i \(0.437338\pi\)
\(822\) −3.18412e100 −0.870786
\(823\) 5.47295e100 1.43525 0.717624 0.696430i \(-0.245229\pi\)
0.717624 + 0.696430i \(0.245229\pi\)
\(824\) −2.39345e101 −6.01916
\(825\) −7.57119e97 −0.00182601
\(826\) −4.13037e98 −0.00955382
\(827\) 1.68367e100 0.373523 0.186761 0.982405i \(-0.440201\pi\)
0.186761 + 0.982405i \(0.440201\pi\)
\(828\) −1.08302e101 −2.30458
\(829\) −3.72126e100 −0.759554 −0.379777 0.925078i \(-0.623999\pi\)
−0.379777 + 0.925078i \(0.623999\pi\)
\(830\) 8.28340e100 1.62186
\(831\) 2.11810e100 0.397842
\(832\) 4.09670e101 7.38209
\(833\) 1.60225e100 0.276998
\(834\) −4.74198e100 −0.786558
\(835\) −8.07061e100 −1.28447
\(836\) 2.89613e99 0.0442284
\(837\) 2.00087e100 0.293217
\(838\) −1.15302e101 −1.62150
\(839\) 6.67827e100 0.901314 0.450657 0.892697i \(-0.351190\pi\)
0.450657 + 0.892697i \(0.351190\pi\)
\(840\) 8.30350e98 0.0107554
\(841\) −7.68610e100 −0.955530
\(842\) −4.01986e100 −0.479671
\(843\) −2.90135e97 −0.000332314 0
\(844\) 1.28833e101 1.41648
\(845\) −1.39035e101 −1.46747
\(846\) 1.87148e101 1.89630
\(847\) 8.49386e98 0.00826281
\(848\) −3.58540e101 −3.34874
\(849\) 2.63947e100 0.236702
\(850\) 1.06394e100 0.0916145
\(851\) 1.07999e101 0.892996
\(852\) 1.79339e101 1.42400
\(853\) −6.96534e100 −0.531130 −0.265565 0.964093i \(-0.585558\pi\)
−0.265565 + 0.964093i \(0.585558\pi\)
\(854\) −2.56217e99 −0.0187634
\(855\) 6.62944e100 0.466279
\(856\) −6.40410e101 −4.32627
\(857\) −7.62224e99 −0.0494589 −0.0247294 0.999694i \(-0.507872\pi\)
−0.0247294 + 0.999694i \(0.507872\pi\)
\(858\) 5.20798e99 0.0324607
\(859\) 2.50764e101 1.50142 0.750708 0.660634i \(-0.229713\pi\)
0.750708 + 0.660634i \(0.229713\pi\)
\(860\) 5.40895e101 3.11112
\(861\) 1.19454e98 0.000660074 0
\(862\) 4.79056e101 2.54323
\(863\) −6.09184e100 −0.310725 −0.155362 0.987858i \(-0.549655\pi\)
−0.155362 + 0.987858i \(0.549655\pi\)
\(864\) −5.93921e101 −2.91075
\(865\) −3.39382e101 −1.59821
\(866\) −1.18175e101 −0.534760
\(867\) 7.13356e100 0.310204
\(868\) −2.58966e99 −0.0108221
\(869\) 9.82935e99 0.0394769
\(870\) −3.88361e100 −0.149907
\(871\) −4.04899e101 −1.50217
\(872\) 1.23027e102 4.38714
\(873\) 3.04453e101 1.04359
\(874\) −2.65097e101 −0.873497
\(875\) −2.34618e99 −0.00743161
\(876\) −5.20497e100 −0.158499
\(877\) −2.02770e101 −0.593633 −0.296817 0.954934i \(-0.595925\pi\)
−0.296817 + 0.954934i \(0.595925\pi\)
\(878\) 3.74567e101 1.05431
\(879\) −9.57900e100 −0.259241
\(880\) −5.57850e100 −0.145166
\(881\) 2.95221e101 0.738717 0.369359 0.929287i \(-0.379577\pi\)
0.369359 + 0.929287i \(0.379577\pi\)
\(882\) −7.21390e101 −1.73582
\(883\) 3.63350e101 0.840778 0.420389 0.907344i \(-0.361894\pi\)
0.420389 + 0.907344i \(0.361894\pi\)
\(884\) −5.40727e101 −1.20330
\(885\) −1.00189e101 −0.214426
\(886\) −1.38926e102 −2.85969
\(887\) −5.78176e101 −1.14471 −0.572355 0.820006i \(-0.693970\pi\)
−0.572355 + 0.820006i \(0.693970\pi\)
\(888\) 6.14172e101 1.16961
\(889\) 1.76529e99 0.00323374
\(890\) −1.00560e102 −1.77203
\(891\) 1.27871e100 0.0216765
\(892\) 2.70595e102 4.41299
\(893\) 3.38460e101 0.531046
\(894\) −8.45513e100 −0.127637
\(895\) 8.14750e101 1.18340
\(896\) 2.85147e100 0.0398513
\(897\) −3.52219e101 −0.473667
\(898\) 5.18445e101 0.670917
\(899\) 7.83095e100 0.0975226
\(900\) −3.53927e101 −0.424177
\(901\) 1.92626e101 0.222182
\(902\) −1.34633e100 −0.0149460
\(903\) −2.64527e99 −0.00282646
\(904\) −9.91795e101 −1.02003
\(905\) 1.64449e102 1.62800
\(906\) 9.18123e101 0.874939
\(907\) −8.87640e100 −0.0814302 −0.0407151 0.999171i \(-0.512964\pi\)
−0.0407151 + 0.999171i \(0.512964\pi\)
\(908\) −4.07170e102 −3.59595
\(909\) 8.79059e100 0.0747419
\(910\) −3.28224e100 −0.0268685
\(911\) −4.55318e101 −0.358864 −0.179432 0.983770i \(-0.557426\pi\)
−0.179432 + 0.983770i \(0.557426\pi\)
\(912\) −8.98633e101 −0.681962
\(913\) 3.37342e100 0.0246507
\(914\) 5.80707e101 0.408614
\(915\) −6.21495e101 −0.421124
\(916\) −1.91942e102 −1.25249
\(917\) 1.81237e100 0.0113895
\(918\) 5.67877e101 0.343702
\(919\) 8.86482e101 0.516755 0.258378 0.966044i \(-0.416812\pi\)
0.258378 + 0.966044i \(0.416812\pi\)
\(920\) 6.32928e102 3.55365
\(921\) 3.17670e101 0.171798
\(922\) 1.15209e102 0.600163
\(923\) −4.58336e102 −2.29998
\(924\) 5.23028e98 0.000252838 0
\(925\) 3.52935e101 0.164363
\(926\) 8.10375e102 3.63586
\(927\) −3.45102e102 −1.49175
\(928\) −2.32447e102 −0.968098
\(929\) −3.08187e102 −1.23672 −0.618362 0.785894i \(-0.712203\pi\)
−0.618362 + 0.785894i \(0.712203\pi\)
\(930\) −8.50191e101 −0.328742
\(931\) −1.30465e102 −0.486104
\(932\) −7.76153e102 −2.78675
\(933\) 1.71678e102 0.594016
\(934\) 9.03959e101 0.301427
\(935\) 2.99705e100 0.00963148
\(936\) 1.57404e103 4.87528
\(937\) 5.42024e102 1.61809 0.809044 0.587748i \(-0.199985\pi\)
0.809044 + 0.587748i \(0.199985\pi\)
\(938\) −5.50360e100 −0.0158361
\(939\) 3.31477e101 0.0919370
\(940\) −1.24985e103 −3.34154
\(941\) 1.40089e102 0.361045 0.180522 0.983571i \(-0.442221\pi\)
0.180522 + 0.983571i \(0.442221\pi\)
\(942\) 1.44624e102 0.359323
\(943\) 9.10530e101 0.218092
\(944\) −1.06723e103 −2.46448
\(945\) 2.54685e100 0.00567030
\(946\) 2.98139e101 0.0639992
\(947\) 1.40868e102 0.291566 0.145783 0.989317i \(-0.453430\pi\)
0.145783 + 0.989317i \(0.453430\pi\)
\(948\) −5.84710e102 −1.16695
\(949\) 1.33023e102 0.256001
\(950\) −8.66324e101 −0.160774
\(951\) −7.48944e101 −0.134036
\(952\) −4.75200e100 −0.00820166
\(953\) 5.24667e102 0.873331 0.436666 0.899624i \(-0.356159\pi\)
0.436666 + 0.899624i \(0.356159\pi\)
\(954\) −8.67270e102 −1.39231
\(955\) 8.36734e102 1.29560
\(956\) 2.99119e102 0.446732
\(957\) −1.58160e100 −0.00227843
\(958\) 6.84170e102 0.950723
\(959\) 8.17247e100 0.0109550
\(960\) 1.35072e103 1.74666
\(961\) −6.30165e102 −0.786135
\(962\) −2.42772e103 −2.92186
\(963\) −9.23381e102 −1.07220
\(964\) 3.66424e103 4.10513
\(965\) −2.72118e102 −0.294147
\(966\) −4.78754e100 −0.00499346
\(967\) 7.85802e102 0.790860 0.395430 0.918496i \(-0.370596\pi\)
0.395430 + 0.918496i \(0.370596\pi\)
\(968\) 3.68187e103 3.57576
\(969\) 4.82790e101 0.0452468
\(970\) −2.75193e103 −2.48893
\(971\) −8.53716e102 −0.745161 −0.372580 0.928000i \(-0.621527\pi\)
−0.372580 + 0.928000i \(0.621527\pi\)
\(972\) −2.89012e103 −2.43461
\(973\) 1.21709e101 0.00989534
\(974\) 2.67220e102 0.209693
\(975\) −1.15103e102 −0.0871823
\(976\) −6.62029e103 −4.84014
\(977\) −1.72478e102 −0.121722 −0.0608611 0.998146i \(-0.519385\pi\)
−0.0608611 + 0.998146i \(0.519385\pi\)
\(978\) −9.98323e102 −0.680112
\(979\) −4.09533e101 −0.0269331
\(980\) 4.81774e103 3.05875
\(981\) 1.77387e103 1.08728
\(982\) 4.56050e103 2.69877
\(983\) −1.14304e103 −0.653078 −0.326539 0.945184i \(-0.605882\pi\)
−0.326539 + 0.945184i \(0.605882\pi\)
\(984\) 5.17803e102 0.285649
\(985\) −1.31508e103 −0.700488
\(986\) 2.22254e102 0.114313
\(987\) 6.11244e100 0.00303580
\(988\) 4.40293e103 2.11167
\(989\) −2.01633e103 −0.933879
\(990\) −1.34938e102 −0.0603559
\(991\) 2.50288e103 1.08118 0.540591 0.841286i \(-0.318201\pi\)
0.540591 + 0.841286i \(0.318201\pi\)
\(992\) −5.08869e103 −2.12302
\(993\) 1.71546e99 6.91243e−5 0
\(994\) −6.22994e101 −0.0242468
\(995\) −3.79733e102 −0.142752
\(996\) −2.00672e103 −0.728684
\(997\) 1.06606e103 0.373937 0.186969 0.982366i \(-0.440134\pi\)
0.186969 + 0.982366i \(0.440134\pi\)
\(998\) 4.04425e103 1.37036
\(999\) 1.88379e103 0.616627
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))