Properties

Label 1.50
Level 1
Weight 50
Dimension 3
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 4
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 50 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{50}(\Gamma_1(1))\).

Total New Old
Modular forms 4 4 0
Cusp forms 3 3 0
Eisenstein series 1 1 0

Trace form

\( 3q - 24225168q^{2} - 326954692404q^{3} + 31502767984896q^{4} + 63884035717079250q^{5} + 8906136249246768576q^{6} + 509391477498711192q^{7} + 12774393005516465664000q^{8} + 341625690512280455369319q^{9} + O(q^{10}) \) \( 3q - 24225168q^{2} - 326954692404q^{3} + 31502767984896q^{4} + 63884035717079250q^{5} + 8906136249246768576q^{6} + 509391477498711192q^{7} + 12774393005516465664000q^{8} + 341625690512280455369319q^{9} - 1782704508900495946524000q^{10} - 20839986192711815613370524q^{11} - 101756595014280089890126848q^{12} - 187524857197340618282341014q^{13} - 9454369415029168241295938688q^{14} - 204230679539215002884128467000q^{15} - 958699697068386571735634214912q^{16} - 3305035636247475259184114894538q^{17} - 20227965712272756371678796043344q^{18} - 45882942802931464757155696518660q^{19} + 19614616637279540996591887296000q^{20} + 617794442803555252870956383262816q^{21} + 1789915191438262082177360193562944q^{22} + 4533392548023086653463590407813576q^{23} - 2513947703938508593953436558049280q^{24} - 13921151905580403838435182832171875q^{25} - 85826222237480824536590109710199264q^{26} - 316454625615073819697154158592097800q^{27} - 59263339345763305527729286468663296q^{28} + 1118089919316361970349176934175494810q^{29} + 5019197819712535273166303836165776000q^{30} + 934226816157578575389156342339525216q^{31} + 731728685735702515419064521056059392q^{32} - 24487068877327908023713382739550873968q^{33} - 44386547077569962679458968510685418528q^{34} - 118496887985378726635932152589238374000q^{35} + 37986811000754375090144064848875953408q^{36} + 242135148519373130928922851818564983602q^{37} + 1156029602765443663092741329710471492800q^{38} + 1291017145684876237790670030697385259048q^{39} + 521466322563622592824981612412298240000q^{40} - 6211739675976490815696297371880432723714q^{41} - 14577965575239226149151901656398676210176q^{42} - 7795173962887472637660666233812713782844q^{43} + 2342252938597505040255206661879982328832q^{44} + 76758284157261249391010855229819118430250q^{45} + 26787138361451470082912377308943265940096q^{46} + 72757717838871152990888073123214445891472q^{47} + 156517630976899733143320027855300206002176q^{48} - 280157966384090888246597869444400847657429q^{49} - 537697283161263679965664107392030595750000q^{50} - 1538734957331600122304206020917586572488104q^{51} - 123529799747407597799198092229890019578368q^{52} - 155850890670432045962015052011776669693854q^{53} + 8252737541190722285688590807826219494394240q^{54} + 4640026560861316230546160030865773419591000q^{55} + 6722101775263505338291028050795018900439040q^{56} - 7909742361043655643598112535376781525014800q^{57} - 16549417550295130349814323361508282251506400q^{58} - 62596927936822013761436024025606581543386380q^{59} - 8860237536153508564855019737671281942784000q^{60} - 24037263967789435219196348055077866809754374q^{61} + 188825800588885099392385526941761279238024704q^{62} - 79613772299337773967480392108297858821089864q^{63} + 514652981263254699809134733483815976080244736q^{64} - 244975900670806240216695171564505814930314500q^{65} + 520146826433507127417478540282210913545819392q^{66} - 1019040852324305100821779153549119164107459188q^{67} + 147929481309005416179289053660840704965292544q^{68} - 4867866269191569039747093560336346164459611872q^{69} + 2807457123724968989995337407321309803024672000q^{70} - 3208129335291950593367863544185773469328334504q^{71} + 10389376832262916146131931928642229401854259200q^{72} + 5668108076325412165814435883536677392865317726q^{73} + 10012493148932275797653251806650724700277983392q^{74} - 12104818074938487392123628092507024931595687500q^{75} + 753841821393723585433963960120373529551508480q^{76} - 32043339793247959180079389483660528277811891936q^{77} - 27771485354519690073790188371684714833523265408q^{78} - 7871365395380306420112251724245018715125364240q^{79} - 30434832804539714147732706266001913558351872000q^{80} + 67270927730095597004530465543730351634592280043q^{81} + 118639125705754411670909153459409940471487282784q^{82} + 94164681901361229355849854653903786480577085116q^{83} + 7700494417700399139591084235352419616317120512q^{84} + 297863286656785614551226799130947646752077538500q^{85} - 347916436657924446515600473690440815675104929984q^{86} - 175500245979701689466461020645367234129141215000q^{87} - 1057522149818049090984983413770258669302102016000q^{88} + 367807201561165354579457777200332871192114777230q^{89} - 2007318616781959003323900738484966136471887212000q^{90} + 1613372397893666548508325640004129525440352221776q^{91} + 467187868629171186038576611613065932844001728512q^{92} + 5954871901405488350696717407304686000200433533312q^{93} + 904097685092930858948295844890436017323554129152q^{94} + 1475636199748052355599968141572624301097796705000q^{95} - 2698554985048479483842995984936051823306493394944q^{96} - 10431108583780665799950508389192126734793760399578q^{97} - 2841886978251444216347516645227034756825518204176q^{98} - 11387023179914295087805432025124514927226421923052q^{99} + O(q^{100}) \)

Decomposition of \(S_{50}^{\mathrm{new}}(\Gamma_1(1))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1.50.a \(\chi_{1}(1, \cdot)\) 1.50.a.a 3 1