Properties

Level 10
Symmetry odd
Weight 0
Character \( \chi_{10}(1,\cdot) \)
Multiplicity 1
Precision 0
Fricke Eigenvalue -1
Atkin-Lehner Eigenvalues n/a

Related objects

Downloads

Learn more about

Spectral parameter

$R= 23.3561291756$

The first few Fourier Coefficients

n c(n)
0  0
1 1
2 -0.707106781
3 1.825387799
4 0.5
5 0.447213595
6 -1.290744091
7 -1.062178659
8 -0.353553390
9 2.332040619
10 -0.316227766
11 1.114816867
12 0.912693899
13 1.366139367
14 0.751073733
15 0.816338241
16 0.250000000
17 1.082587517
18 -1.649001735
19 -0.882625424
20 0.223606797
21 -1.938887966
22 -0.788294567
23 0.953598439
24 -0.645372045
25 0.200000000
26 -0.966006411
27 2.431490695
28 -0.531089329
29 0.169897482
30 -0.577238306
31 -1.520339691
32 -0.176776695
33 2.034973109
34 -0.765504974
35 -0.475020737
36 1.166020309
37 -0.766948319
38 0.624110422
39 2.493734134
40 -0.158113883
41 -0.304873156
42 1.371000829
43 0.955047070
44 0.557408433
45 1.042920270
46 -0.674295923
47 0.831933368
48 0.456346949
49 0.128223505
50 -0.141421356
51 1.976142046
52 0.683069683
53 1.337200236
54 -1.719323558
55 0.498561259
56 0.375536866
57 -1.611133680
58 -0.120135662
59 -0.189366509
60 0.408169120
61 -1.586710465
62 1.075042505
63 -2.477043779
64 0.125000000
65 0.610956098
66 -1.438943285
67 -1.369532425
68 0.541293758
69 1.740686958
70 0.335890384
71 0.644999357
72 -0.824500867
73 -0.448936249
74 0.542314357
75 0.365077559
76 -0.441312712
77 -1.184134686
78 -1.763336317
79 1.859669161
80 0.111803398
81 2.106372830
82 0.215577876
83 -0.223388908
84 -0.969443983
85 0.484147856
86 -0.675320260
87 0.310128792
88 -0.394147283
89 0.255985081
90 -0.737455995
91 -1.451084082
92 0.476799219
93 -2.775209524
94 -0.588265726
95 -0.394722089
96 -0.322686022
97 0.794571274
98 -0.0906677100
99 2.599798218
100 0.100000000
101 1.398787406
102 -1.397343441
103 -0.431388830
104 -0.483003205
105 -0.867097058
106 -0.945543355
107 0.617583158
108 1.215745347
109 0.633851677
110 -0.352536047
111 -1.399978105
112 -0.265544664
113 1.064323087
114 1.139243551
115 0.426462187
116 0.0849487414
117 3.185892497
118 0.133902343
119 -1.149901357
120 -0.288619153
121 0.242816649
122 1.121973729
123 -0.556511739
124 -0.760169845
125 0.0894427190
126 1.751534453
127 1.420361002
128 -0.0883883476
129 1.743331270
130 -0.432011200
131 -0.817262762
132 1.017486554
133 0.937505894
134 0.968405664
135 1.087395696
136 -0.382752487
137 -1.057058791
138 -1.230851552
139 -0.720042342
140 -0.237510368
141 1.518601022
142 -0.456083419
143 1.522995244
144 0.583010154
145 0.0759804641
146 0.317445866
147 0.234057691
148 -0.383474159
149 1.011988708
150 -0.258148818
151 -1.315437932
152 0.312055211
153 2.524638415
154 0.837309666
155 -0.679916579
156 1.246867067
157 -0.896017700
158 -1.314984675
159 2.440908952
160 -0.0790569415
161 -1.012893584
162 -1.489430512
163 -1.082866838
164 -0.152436578
165 0.910067641
166 0.157959812
167 0.134095580
168 0.685500414
169 0.866336848
170 -0.342344232
171 -2.058324519
172 0.477523535
173 1.441143739
174 -0.219294172
175 -0.212435731
176 0.278704216
177 -0.345676051
178 -0.181008787
179 0.452203472
180 0.521460135
181 1.178978592
182 1.026071394
183 -2.896190519
184 -0.337147961
185 -0.342989715
186 1.962369473
187 1.207001001
188 0.415966684
189 -2.582808195
190 0.279110666
191 0.786232628
192 0.228173474
193 -0.364932040
194 -0.561846736
195 1.115231808
196 0.0641117526
197 1.736244773
198 -1.838334950
199 -0.856970288
200 -0.0707106781
201 -2.497793938
202 -0.989092060
203 -0.180314506
204 0.988071023
205 -0.136343420
206 0.305037967
207 2.242623523
208 0.341534841
209 -0.938648318
210 0.613130210
211 -0.747930284
212 0.668600118
213 1.265726172
214 -0.436697239
215 0.427110034
216 -0.859661779
217 1.819474376