Properties

Level 10
Symmetry even
Weight 0
Character \( \chi_{10}(1,\cdot) \)
Multiplicity 1
Precision 0
Fricke Eigenvalue -1
Atkin-Lehner Eigenvalues n/a

Related objects

Downloads

Learn more about

Spectral parameter

$R= 18.3951548888$

The first few Fourier Coefficients

n c(n)
0  0
1 1
2 -0.707106781
3 -1.476870947
4 0.5
5 0.447213595
6 1.044305462
7 0.264936688
8 -0.353553390
9 1.181147797
10 -0.316227766
11 -1.081170080
12 -0.738435473
13 0.766203114
14 -0.187338529
15 -0.660476766
16 0.250000000
17 -1.800760689
18 -0.835197616
19 -0.585196768
20 0.223606797
21 -0.391277298
22 0.764502695
23 1.289460380
24 0.522152731
25 0.200000000
26 -0.541787418
27 -0.267531918
28 0.132468344
29 0.639704981
30 0.467027600
31 0.277136753
32 -0.176776695
33 1.596748681
34 1.273330094
35 0.118483289
36 0.590573898
37 -0.802214992
38 0.413796603
39 -1.131583120
40 -0.158113883
41 1.307046449
42 0.276674831
43 1.043315957
44 -0.540585040
45 0.528225353
46 -0.911786178
47 0.0449345481
48 -0.369217736
49 -0.929808550
50 -0.141421356
51 2.659491145
52 0.383101557
53 1.453257154
54 0.189173633
55 -0.483513959
56 -0.0936692646
57 0.864260106
58 -0.452339730
59 1.213608365
60 -0.330238383
61 -1.590479029
62 -0.195965278
63 0.312929386
64 0.125000000
65 0.342656449
66 -1.129071820
67 1.782617644
68 -0.900380344
69 -1.904366573
70 -0.0837803372
71 -0.252911103
72 -0.417598808
73 -1.264678952
74 0.567251661
75 -0.295374189
76 -0.292598384
77 -0.286441621
78 0.800150097
79 -0.946883290
80 0.111803398
81 -0.786037678
82 -0.924221407
83 -1.106041512
84 -0.195638649
85 -0.805324662
86 -0.737735788
87 -0.944761702
88 0.382251347
89 1.161992430
90 -0.373511729
91 0.202995316
92 0.644730190
93 -0.409295220
94 -0.0317735237
95 -0.261707950
96 0.261076365
97 -0.138606507
98 0.657473931
99 -1.277021659
100 0.100000000
101 -0.560010445
102 -1.880544223
103 1.289001255
104 -0.270893709
105 -0.174984527
106 -1.027607988
107 0.824686418
108 -0.133765959
109 -1.034191021
110 0.341895999
111 1.184768009
112 0.0662341722
113 0.177917547
114 -0.611124181
115 0.576664212
116 0.319852490
117 0.904999086
118 -0.858150704
119 -0.477087580
120 0.233513800
121 0.168928791
122 1.124638507
123 -1.930339018
124 0.138568376
125 0.0894427190
126 -0.221274491
127 1.901792906
128 -0.0883883476
129 -1.540843160
130 -0.242294699
131 -1.580434229
132 0.798374340
133 -0.155039943
134 -1.260501024
135 -0.119643911
136 0.636665047
137 0.729425231
138 1.346590518
139 -0.250381540
140 0.0592416446
141 -0.0663611420
142 0.178835156
143 -0.828410891
144 0.295286949
145 0.286084764
146 0.894263063
147 1.373206357
148 -0.401107496
149 -0.302428580
150 0.208861092
151 -0.115660993
152 0.206898301
153 -2.126921146
154 0.202544812
155 0.123939324
156 -0.565791560
157 -0.112665223
158 0.669547595
159 -2.146503365
160 -0.0790569415
161 0.341520190
162 0.555812572
163 -0.187510045
164 0.653523224
165 0.714087719
166 0.782089453
167 -1.063347897
168 0.138337415
169 -0.413726738
170 0.569450529
171 -0.695694221
172 0.521657978
173 1.840544857
174 0.668047406
175 0.0529873377
176 -0.270292520
177 -1.801821149
178 -0.821652727
179 -0.875026668
180 0.264112676
181 -0.809070200
182 -0.143539364
183 2.265215660
184 -0.455893089
185 -0.358761451
186 0.289415425
187 1.893963820
188 0.0224672740
189 -0.201180865
190 0.185055466