Table of the dimensions of the spaces of Bianchi cusp forms for \(\Gamma_0(\mathfrak{n})\subseteq \SL(2,\mathcal{O}_K)\) for levels \(\mathfrak{n}\) ordered by norm, over \(K=\) \(\Q(\sqrt{-163}) \).

For each weight $w$, we show both the dimension $d$ of the space of cusp forms of weight $w$, and the dimension $n$ of the new subspace.

Displaying all 28 levels, showing only levels with positive cuspidal dimension.

  weight 2 3 4 5 6
level label norm $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$ $d$ $n$
1.1 1 6 6 13 13 20 20 26 26 33 33
4.1 4 19 7 39 13 60 20      
9.1 9 26 14 53 27         
16.1 16 38 6 78 13         
25.1 25 41 29            
36.1 36 79 13            
41.1 41 12 0            
41.2 41 12 0            
43.1 43 12 0            
43.2 43 12 0            
47.1 47 14 2            
47.2 47 14 2            
49.1 49 57 45            
53.1 53 12 0            
53.2 53 12 0            
61.1 61 12 0            
61.2 61 12 0            
64.1 64 77 20            
71.1 71 12 0            
71.2 71 12 0            
81.1 81 142 96            
83.1 83 12 0            
83.2 83 12 0            
97.1 97 12 0            
97.2 97 12 0            
113.1 113 12 0            
113.2 113 12 0            
121.1 121 81 69