# Properties

 Base field $$\Q(\sqrt{-2})$$ Weight 2 Level norm 5625 Level $$\left(75\right)$$ Label 2.0.8.1-5625.2-b Dimension 1 CM no Base-change yes Sign -1 Analytic rank odd

# Related objects

## Base Field: $$\Q(\sqrt{-2})$$

Generator $$a$$, with minimal polynomial $$x^2 + 2$$; class number $$1$$.

## Form

 Weight 2 Level 5625.2 = $$\left(75\right)$$ Label 2.0.8.1-5625.2-b Dimension: 1 CM: no Base change: yes 75.2.a.b , 4800.2.a.bz Newspace: 2.0.8.1-5625.2 (dimension 3) Sign of functional equation: -1 Analytic rank: odd

## Hecke eigenvalues

The Hecke eigenvalue field is $\Q$.

Norm Prime Eigenvalue
$$2$$ 2.1 = ($$a$$) $$1$$
$$3$$ 3.1 = ($$-a - 1$$) $$1$$
$$3$$ 3.2 = ($$a - 1$$) $$1$$
$$11$$ 11.1 = ($$a + 3$$) $$-4$$
$$11$$ 11.2 = ($$a - 3$$) $$-4$$
$$17$$ 17.1 = ($$-2 a + 3$$) $$-2$$
$$17$$ 17.2 = ($$2 a + 3$$) $$-2$$
$$19$$ 19.1 = ($$-3 a + 1$$) $$4$$
$$19$$ 19.2 = ($$3 a + 1$$) $$4$$
$$25$$ 25.1 = ($$5$$) $$0$$
$$41$$ 41.1 = ($$-4 a - 3$$) $$10$$
$$41$$ 41.2 = ($$4 a - 3$$) $$10$$
$$43$$ 43.1 = ($$-3 a - 5$$) $$-4$$
$$43$$ 43.2 = ($$3 a - 5$$) $$-4$$
$$49$$ 49.1 = ($$7$$) $$-14$$
$$59$$ 59.1 = ($$-5 a + 3$$) $$-4$$
$$59$$ 59.2 = ($$-5 a - 3$$) $$-4$$
$$67$$ 67.1 = ($$-3 a + 7$$) $$-12$$
$$67$$ 67.2 = ($$3 a + 7$$) $$-12$$
$$73$$ 73.1 = ($$-6 a + 1$$) $$-10$$
$$73$$ 73.2 = ($$6 a + 1$$) $$-10$$
$$83$$ 83.1 = ($$a + 9$$) $$-12$$
$$83$$ 83.2 = ($$a - 9$$) $$-12$$
$$89$$ 89.1 = ($$-2 a + 9$$) $$-6$$
$$89$$ 89.2 = ($$2 a + 9$$) $$-6$$
$$97$$ 97.1 = ($$-6 a - 5$$) $$-2$$
$$97$$ 97.2 = ($$6 a - 5$$) $$-2$$
$$107$$ 107.1 = ($$7 a + 3$$) $$12$$
$$107$$ 107.2 = ($$7 a - 3$$) $$12$$
$$113$$ 113.1 = ($$-4 a + 9$$) $$-2$$
$$113$$ 113.2 = ($$4 a + 9$$) $$-2$$
$$131$$ 131.1 = ($$-5 a - 9$$) $$-12$$
$$131$$ 131.2 = ($$5 a - 9$$) $$-12$$
$$137$$ 137.1 = ($$-8 a + 3$$) $$6$$
$$137$$ 137.2 = ($$-8 a - 3$$) $$6$$
$$139$$ 139.1 = ($$-3 a - 11$$) $$-4$$
$$139$$ 139.2 = ($$3 a - 11$$) $$-4$$
$$163$$ 163.1 = ($$-9 a + 1$$) $$4$$
$$163$$ 163.2 = ($$9 a + 1$$) $$4$$
$$169$$ 169.1 = ($$13$$) $$-22$$
$$179$$ 179.1 = ($$7 a + 9$$) $$20$$
$$179$$ 179.2 = ($$7 a - 9$$) $$20$$
$$193$$ 193.1 = ($$-6 a - 11$$) $$-2$$
$$193$$ 193.2 = ($$6 a - 11$$) $$-2$$
$$211$$ 211.1 = ($$9 a - 7$$) $$20$$
$$211$$ 211.2 = ($$9 a + 7$$) $$20$$
$$227$$ 227.1 = ($$a + 15$$) $$20$$
$$227$$ 227.2 = ($$a - 15$$) $$20$$
$$233$$ 233.1 = ($$-2 a + 15$$) $$6$$
$$233$$ 233.2 = ($$2 a + 15$$) $$6$$

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$3$$ 3.1 = ($$-a - 1$$) $$-1$$
$$3$$ 3.2 = ($$a - 1$$) $$-1$$
$$25$$ 25.1 = ($$5$$) $$1$$