Properties

Base field \(\Q(\sqrt{-2}) \)
Weight 2
Level norm 16562
Level \( \left(91 a\right) \)
Label 2.0.8.1-16562.1-d
Dimension 1
CM no
Base-change yes
Sign +1
Analytic rank \(0\)

Related objects

Learn more about

Base Field: \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \(x^2 + 2\); class number \(1\).

Form

Weight 2
Level 16562.1 = \( \left(91 a\right) \)
Label 2.0.8.1-16562.1-d
Dimension: 1
CM: no
Base change: yes 5824.2.a.x , 182.2.a.d
Newspace:2.0.8.1-16562.1 (dimension 5)
Sign of functional equation: +1
Analytic rank: \(0\)
L-ratio: 652

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$.

Norm Prime Eigenvalue
\( 2 \) 2.1 = (\( a \)) \( 1 \)
\( 3 \) 3.1 = (\( -a - 1 \)) \( 1 \)
\( 3 \) 3.2 = (\( a - 1 \)) \( 1 \)
\( 11 \) 11.1 = (\( a + 3 \)) \( -3 \)
\( 11 \) 11.2 = (\( a - 3 \)) \( -3 \)
\( 17 \) 17.1 = (\( -2 a + 3 \)) \( 0 \)
\( 17 \) 17.2 = (\( 2 a + 3 \)) \( 0 \)
\( 19 \) 19.1 = (\( -3 a + 1 \)) \( 2 \)
\( 19 \) 19.2 = (\( 3 a + 1 \)) \( 2 \)
\( 25 \) 25.1 = (\( 5 \)) \( -10 \)
\( 41 \) 41.1 = (\( -4 a - 3 \)) \( 3 \)
\( 41 \) 41.2 = (\( 4 a - 3 \)) \( 3 \)
\( 43 \) 43.1 = (\( -3 a - 5 \)) \( 8 \)
\( 43 \) 43.2 = (\( 3 a - 5 \)) \( 8 \)
\( 49 \) 49.1 = (\( 7 \)) \( 1 \)
\( 59 \) 59.1 = (\( -5 a + 3 \)) \( 6 \)
\( 59 \) 59.2 = (\( -5 a - 3 \)) \( 6 \)
\( 67 \) 67.1 = (\( -3 a + 7 \)) \( 5 \)
\( 67 \) 67.2 = (\( 3 a + 7 \)) \( 5 \)
\( 73 \) 73.1 = (\( -6 a + 1 \)) \( 11 \)
\( 73 \) 73.2 = (\( 6 a + 1 \)) \( 11 \)
\( 83 \) 83.1 = (\( a + 9 \)) \( 12 \)
\( 83 \) 83.2 = (\( a - 9 \)) \( 12 \)
\( 89 \) 89.1 = (\( -2 a + 9 \)) \( -18 \)
\( 89 \) 89.2 = (\( 2 a + 9 \)) \( -18 \)

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 2 \) 2.1 = (\( a \)) \( -1 \)
\( 49 \) 49.1 = (\( 7 \)) \( -1 \)
\( 169 \) 169.1 = (\( 13 \)) \( -1 \)