# Properties

 Base field $$\Q(\sqrt{-7})$$ Weight 2 Level norm 5625 Level $$\left(75\right)$$ Label 2.0.7.1-5625.1-b Dimension 1 CM no Base-change yes Sign +1 Analytic rank $$0$$

# Related objects

## Base Field: $$\Q(\sqrt{-7})$$

Generator $$a$$, with minimal polynomial $$x^2 - x + 2$$; class number $$1$$.

## Form

 Weight 2 Level 5625.1 = $$\left(75\right)$$ Label 2.0.7.1-5625.1-b Dimension: 1 CM: no Base change: yes 3675.2.a.j , 75.2.a.b Newspace: 2.0.7.1-5625.1 (dimension 3) Sign of functional equation: +1 Analytic rank: $$0$$ L-ratio: 16

## Hecke eigenvalues

The Hecke eigenvalue field is $\Q$.

Norm Prime Eigenvalue
$$2$$ 2.1 = ($$a$$) $$1$$
$$2$$ 2.2 = ($$-a + 1$$) $$1$$
$$7$$ 7.1 = ($$-2 a + 1$$) $$0$$
$$9$$ 9.1 = ($$3$$) $$1$$
$$11$$ 11.1 = ($$-2 a + 3$$) $$-4$$
$$11$$ 11.2 = ($$2 a + 1$$) $$-4$$
$$23$$ 23.1 = ($$-2 a + 5$$) $$0$$
$$23$$ 23.2 = ($$2 a + 3$$) $$0$$
$$25$$ 25.1 = ($$5$$) $$0$$
$$29$$ 29.1 = ($$-4 a + 1$$) $$-2$$
$$29$$ 29.2 = ($$4 a - 3$$) $$-2$$
$$37$$ 37.1 = ($$-4 a + 5$$) $$10$$
$$37$$ 37.2 = ($$4 a + 1$$) $$10$$
$$43$$ 43.1 = ($$-2 a + 7$$) $$-4$$
$$43$$ 43.2 = ($$2 a + 5$$) $$-4$$
$$53$$ 53.1 = ($$-4 a - 3$$) $$10$$
$$53$$ 53.2 = ($$4 a - 7$$) $$10$$
$$67$$ 67.1 = ($$-6 a + 1$$) $$-12$$
$$67$$ 67.2 = ($$6 a - 5$$) $$-12$$
$$71$$ 71.1 = ($$-2 a + 9$$) $$-8$$
$$71$$ 71.2 = ($$2 a + 7$$) $$-8$$
$$79$$ 79.1 = ($$-6 a + 7$$) $$0$$
$$79$$ 79.2 = ($$6 a + 1$$) $$0$$
$$107$$ 107.1 = ($$-2 a + 11$$) $$12$$
$$107$$ 107.2 = ($$2 a + 9$$) $$12$$
$$109$$ 109.1 = ($$-4 a - 7$$) $$14$$
$$109$$ 109.2 = ($$4 a - 11$$) $$14$$
$$113$$ 113.1 = ($$-8 a + 3$$) $$-2$$
$$113$$ 113.2 = ($$-8 a + 5$$) $$-2$$
$$127$$ 127.1 = ($$-6 a - 5$$) $$8$$
$$127$$ 127.2 = ($$6 a - 11$$) $$8$$
$$137$$ 137.1 = ($$-8 a + 9$$) $$6$$
$$137$$ 137.2 = ($$8 a + 1$$) $$6$$
$$149$$ 149.1 = ($$-4 a + 13$$) $$22$$
$$149$$ 149.2 = ($$4 a + 9$$) $$22$$
$$151$$ 151.1 = ($$-2 a + 13$$) $$-8$$
$$151$$ 151.2 = ($$2 a + 11$$) $$-8$$
$$163$$ 163.1 = ($$-6 a + 13$$) $$4$$
$$163$$ 163.2 = ($$6 a + 7$$) $$4$$
$$169$$ 169.1 = ($$13$$) $$-22$$
$$179$$ 179.1 = ($$10 a - 7$$) $$20$$
$$179$$ 179.2 = ($$10 a - 3$$) $$20$$
$$191$$ 191.1 = ($$-10 a + 1$$) $$16$$
$$191$$ 191.2 = ($$10 a - 9$$) $$16$$
$$193$$ 193.1 = ($$-8 a - 5$$) $$-2$$
$$193$$ 193.2 = ($$-8 a + 13$$) $$-2$$
$$197$$ 197.1 = ($$-4 a - 11$$) $$-6$$
$$197$$ 197.2 = ($$4 a - 15$$) $$-6$$
$$211$$ 211.1 = ($$-10 a + 11$$) $$20$$
$$211$$ 211.2 = ($$10 a + 1$$) $$20$$

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$9$$ 9.1 = ($$3$$) $$-1$$
$$25$$ 25.1 = ($$5$$) $$1$$