Base field \(\Q(\sqrt{-15}) \)
Generator \(a\), with minimal polynomial \(x^2 - x + 4\); class number \(2\).
Level 48.1
| Norm: | 48 |
| Ideal: | \((48) = \left(2, a\right)^{4} \cdot \left(3, a + 1\right) \) |
| Label: | 48.1 |
Modular form spaces
| Weight | 2 |
|---|---|
| Dimension of cuspidal subspace: | 2 |
| Dimension of new cuspidal subspace: | 2 |
Newforms
This space contains the following newforms of dimension 1.
| label | weight | sign | base change | CM |
|---|---|---|---|---|
| 48.1-a | 2 | -1 | no | no |
| 48.1-b | 2 | +1 | no | no |