Properties

Label 24.384.5-24.fu.1.4
Level $24$
Index $384$
Genus $5$
Analytic rank $0$
Cusps $24$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $24$ $\SL_2$-level: $24$ Newform level: $576$
Index: $384$ $\PSL_2$-index:$192$
Genus: $5 = 1 + \frac{ 192 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 24 }{2}$
Cusps: $24$ (none of which are rational) Cusp widths $2^{8}\cdot6^{8}\cdot8^{4}\cdot24^{4}$ Cusp orbits $2^{4}\cdot4^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: $0$
$\Q$-gonality: $4$
$\overline{\Q}$-gonality: $4$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 24Z5
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 24.384.5.991

Level structure

$\GL_2(\Z/24\Z)$-generators: $\begin{bmatrix}1&6\\8&23\end{bmatrix}$, $\begin{bmatrix}13&0\\12&1\end{bmatrix}$, $\begin{bmatrix}13&3\\16&5\end{bmatrix}$
$\GL_2(\Z/24\Z)$-subgroup: $D_{12}:D_4$
Contains $-I$: no $\quad$ (see 24.192.5.fu.1 for the level structure with $-I$)
Cyclic 24-isogeny field degree: $2$
Cyclic 24-torsion field degree: $8$
Full 24-torsion field degree: $192$

Jacobian

Conductor: $2^{28}\cdot3^{7}$
Simple: no
Squarefree: yes
Decomposition: $1^{3}\cdot2$
Newforms: 144.2.a.b, 192.2.a.d, 192.2.c.a, 576.2.a.d

Models

Canonical model in $\mathbb{P}^{ 4 }$ defined by 3 equations

$ 0 $ $=$ $ 3 x z - 2 w^{2} $
$=$ $2 x^{2} + 2 x z - x t - z^{2} + z t - t^{2}$
$=$ $x^{2} - 2 x y - 2 x z - 2 y^{2} - 2 y z - z^{2}$
Copy content Toggle raw display

Singular plane model Singular plane model

$ 0 $ $=$ $ 36 x^{8} + 36 x^{7} z + 144 x^{6} y^{2} - 162 x^{6} z^{2} + 252 x^{5} y^{2} z - 288 x^{5} z^{3} + \cdots + 144 z^{8} $
Copy content Toggle raw display

Rational points

This modular curve has real points and $\Q_p$ points for $p$ not dividing the level, but no known rational points.

Maps to other modular curves

$j$-invariant map of degree 192 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{1}{2^{12}\cdot3}\cdot\frac{6033028354670592xw^{22}t-73033308803432448xw^{20}t^{3}+394976763567931392xw^{18}t^{5}-1241357136477290496xw^{16}t^{7}+2504228939272028160xw^{14}t^{9}-3383473992789786624xw^{12}t^{11}+3106427474821275648xw^{10}t^{13}-1933274698356584448xw^{8}t^{15}+801165119611009536xw^{6}t^{17}-211608784278052416xw^{4}t^{19}+32264395373964456xw^{2}t^{21}-2166612279786045xt^{23}+527356485697536z^{2}w^{22}-11359813191598080z^{2}w^{20}t^{2}+81354996364345344z^{2}w^{18}t^{4}-308860561014128640z^{2}w^{16}t^{6}+722313165907427328z^{2}w^{14}t^{8}-1103966755059990528z^{2}w^{12}t^{10}+1126706299399692288z^{2}w^{10}t^{12}-767096432144695296z^{2}w^{8}t^{14}+342600171041793024z^{2}w^{6}t^{16}-96198779310551712z^{2}w^{4}t^{18}+15407021689377624z^{2}w^{2}t^{20}-1078848283379139z^{2}t^{22}-2508743547813888zw^{22}t+32033538714894336zw^{20}t^{3}-179492086226092032zw^{18}t^{5}+579661605233491968zw^{16}t^{7}-1196076373562621952zw^{14}t^{9}+1645835478062727168zw^{12}t^{11}-1531670656829755392zw^{10}t^{13}+961153044521674752zw^{8}t^{15}-399663214726924800zw^{6}t^{17}+105519076159406976zw^{4}t^{19}-16060868883396180zw^{2}t^{21}+1078848283379139zt^{23}-955387020836864w^{24}+22214639496462336w^{22}t^{2}-169429059061678080w^{20}t^{4}+687898167173185536w^{18}t^{6}-1737605977534365696w^{16}t^{8}+2915765565984866304w^{14}t^{10}-3346605506027372544w^{12}t^{12}+2651980302193987584w^{10}t^{14}-1446009267294088704w^{8}t^{16}+532440461290436352w^{6}t^{18}-126584849867790672w^{4}t^{20}+17570662064821080w^{2}t^{22}-1083306333603267t^{24}}{w^{8}(254803968xw^{14}t-4269932544xw^{12}t^{3}+18513764352xw^{10}t^{5}-33955946496xw^{8}t^{7}+31680585216xw^{6}t^{9}-15904050624xw^{4}t^{11}+4108708152xw^{2}t^{13}-429975135xt^{15}+12582912z^{2}w^{14}-635240448z^{2}w^{12}t^{2}+4436140032z^{2}w^{10}t^{4}-10666266624z^{2}w^{8}t^{6}+11862567936z^{2}w^{6}t^{8}-6741644256z^{2}w^{4}t^{10}+1911035592z^{2}w^{2}t^{12}-214997409z^{2}t^{14}-100663296zw^{14}t+1852440576zw^{12}t^{3}-8596942848zw^{10}t^{5}+16389900288zw^{8}t^{7}-15613917696zw^{6}t^{9}+7920104832zw^{4}t^{11}-2054354076zw^{2}t^{13}+214997409zt^{15}-22544384w^{16}+1212678144w^{14}t^{2}-9238167552w^{12}t^{4}+25461043200w^{10}t^{6}-34254420480w^{8}t^{8}+25324731648w^{6}t^{10}-10563715440w^{4}t^{12}+2341017288w^{2}t^{14}-214997409t^{16})}$

Map of degree 1 from the canonical model of this modular curve to the plane model of the modular curve 24.192.5.fu.1 :

$\displaystyle X$ $=$ $\displaystyle x+y$
$\displaystyle Y$ $=$ $\displaystyle w$
$\displaystyle Z$ $=$ $\displaystyle \frac{1}{2}t$

Equation of the image curve:

$0$ $=$ $ 36X^{8}+36X^{7}Z+144X^{6}Y^{2}-162X^{6}Z^{2}+252X^{5}Y^{2}Z-288X^{5}Z^{3}+120X^{4}Y^{4}-12X^{4}Y^{2}Z^{2}-360X^{4}Z^{4}+66X^{3}Y^{4}Z+264X^{3}Y^{2}Z^{3}-792X^{3}Z^{5}+72X^{2}Y^{6}-372X^{2}Y^{4}Z^{2}+816X^{2}Y^{2}Z^{4}-720X^{2}Z^{6}+72XY^{6}Z-288XY^{4}Z^{3}+288XY^{2}Z^{5}+Y^{8}+8Y^{6}Z^{2}-8Y^{4}Z^{4}-96Y^{2}Z^{6}+144Z^{8} $

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
12.192.1-12.g.1.2 $12$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
24.192.1-12.g.1.11 $24$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
24.192.1-24.dm.2.3 $24$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
24.192.1-24.dm.2.15 $24$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
24.192.1-24.dq.4.2 $24$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
24.192.1-24.dq.4.14 $24$ $2$ $2$ $1$ $0$ $1^{2}\cdot2$
24.192.3-24.fx.1.5 $24$ $2$ $2$ $3$ $0$ $1^{2}$
24.192.3-24.fx.1.8 $24$ $2$ $2$ $3$ $0$ $1^{2}$
24.192.3-24.gb.1.2 $24$ $2$ $2$ $3$ $0$ $2$
24.192.3-24.gb.1.16 $24$ $2$ $2$ $3$ $0$ $2$
24.192.3-24.gv.1.9 $24$ $2$ $2$ $3$ $0$ $1^{2}$
24.192.3-24.gv.1.15 $24$ $2$ $2$ $3$ $0$ $1^{2}$
24.192.3-24.gz.3.2 $24$ $2$ $2$ $3$ $0$ $1^{2}$
24.192.3-24.gz.3.8 $24$ $2$ $2$ $3$ $0$ $1^{2}$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
24.1152.25-24.fd.2.1 $24$ $3$ $3$ $25$ $2$ $1^{10}\cdot2^{5}$