Learn more about

Results (displaying all 17 matches)

Polynomial $p$ $e$ $f$ $c$ Galois group Slope content
x12 + 3x2 - 2x + 5 17 1 12 0 $C_{12}$ (as 12T1) $ [\ ]^{12}$
x12 + 117912x6 - 1419857x2 + 3475809936 17 2 6 6 $C_6\times C_2$ (as 12T2) $ [\ ]_{2}^{6}$
x12 - 1419857x2 + 289650828 17 2 6 6 $C_{12}$ (as 12T1) $ [\ ]_{2}^{6}$
x12 - 51x9 + 867x6 - 4913x3 + 111166451 17 3 4 8 $C_3 : C_4$ (as 12T5) $ [\ ]_{3}^{4}$
x12 - 4913x3 + 918731 17 3 4 8 $C_3\times (C_3 : C_4)$ (as 12T19) $ [\ ]_{3}^{12}$
x12 - 34x8 - 10115x4 - 397953 17 4 3 9 $C_{12}$ (as 12T1) $ [\ ]_{4}^{3}$
x12 - 34x8 + 289x4 - 44217 17 4 3 9 $C_{12}$ (as 12T1) $ [\ ]_{4}^{3}$
x12 - 289x4 + 14739 17 4 3 9 $C_{12}$ (as 12T1) $ [\ ]_{4}^{3}$
x12 + 153x8 + 7514x4 + 132651 17 4 3 9 $C_{12}$ (as 12T1) $ [\ ]_{4}^{3}$
x12 - 170x6 + 210681 17 6 2 10 $D_6$ (as 12T3) $ [\ ]_{6}^{2}$
x12 + 85x6 + 2601 17 6 2 10 $C_6\times S_3$ (as 12T18) $ [\ ]_{6}^{6}$
x12 + 136x6 + 7803 17 6 2 10 $C_3 : C_4$ (as 12T5) $ [\ ]_{6}^{2}$
x12 - 17x6 + 867 17 6 2 10 $C_3\times (C_3 : C_4)$ (as 12T19) $ [\ ]_{6}^{6}$
x12 - 17 17 12 1 11 $S_3 \times C_4$ (as 12T11) $ [\ ]_{12}^{2}$
x12 - 153 17 12 1 11 $S_3 \times C_4$ (as 12T11) $ [\ ]_{12}^{2}$
x12 + 51 17 12 1 11 $S_3 \times C_4$ (as 12T11) $ [\ ]_{12}^{2}$
x12 + 459 17 12 1 11 $S_3 \times C_4$ (as 12T11) $ [\ ]_{12}^{2}$



Download all search results for