Properties

Label 7.8.6.3
Base \(\Q_{7}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8:C_2$ (as 8T7)

Related objects

Learn more about

Defining polynomial

\( x^{8} - 7 x^{4} + 147 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{7}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 7 })|$: $4$
This field is not Galois over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{*})$, 7.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}(\sqrt{*})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} - x + 3 \)
Relative Eisenstein polynomial:$ x^{4} - 7 t \in\Q_{7}(t)[x]$

Invariants of the Galois closure

Galois group:$OD_{16}$ (as 8T7)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$4$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:\( x^{8} - x^{7} - 13 x^{6} - 13 x^{5} + 25 x^{4} + 38 x^{3} - 33 x^{2} - 34 x + 11 \)