Properties

Label 7.8.6.1
Base \(\Q_{7}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $Q_8$

Related objects

Learn more about

Defining polynomial

\( x^{8} + 35 x^{4} + 441 \)

Invariants

Base field: $\Q_{ 7 }$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{7}$
Root number: $1$
$|\Gal(K/\Q_{ 7 })|$: $8$
This field is Galois over $\Q_{7}$.

Intermediate fields

7.2.0.1, 7.2.1.1, 7.2.1.2, 7.4.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:\( t^{2} - t + 3 \)
Relative Eisenstein polynomial:\( y^{4} - 7 t^{2} \)

Invariants of the Galois closure

Galois group:$Q_8$
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois Mean Slope:$3/4$
Galois Splitting Model:\( x^{8} - 3 x^{7} + 22 x^{6} - 60 x^{5} + 201 x^{4} - 450 x^{3} + 1528 x^{2} - 3069 x + 4561 \)