Properties

Label 7.8.4.1
Base \(\Q_{7}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $8$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $4$
Discriminant root field: $\Q_{7}$
Root number: $-1$
$|\Gal(K/\Q_{ 7 })|$: $8$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{*})$, $\Q_{7}(\sqrt{7})$, $\Q_{7}(\sqrt{7*})$, 7.4.0.1, 7.4.2.1, 7.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:7.4.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{4} + x^{2} - 3 x + 5 \)
Relative Eisenstein polynomial:$ x^{2} - 7 t^{2} \in\Q_{7}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_4$ (as 8T2)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{8} - x^{7} - x^{6} + 3 x^{5} - x^{4} + 6 x^{3} - 4 x^{2} - 8 x + 16$