Properties

Label 7.7.12.6
Base \(\Q_{7}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(12\)
Galois group $C_7$ (as 7T1)

Related objects

Learn more about

Defining polynomial

\( x^{7} - 7 x^{6} + 252 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $7$
Ramification exponent $e$ : $7$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{7}$
Root number: $1$
$|\Gal(K/\Q_{ 7 })|$: $7$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{7} - 7 x^{6} + 252 \)

Invariants of the Galois closure

Galois group:$C_7$ (as 7T1)
Inertia group:$C_7$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$12/7$
Galois splitting model:$x^{7} - 365169 x^{5} - 17406389 x^{4} + 43034071143 x^{3} + 3935886425940 x^{2} - 1599703929958148 x - 198990186553758081$