Properties

Label 7.4.0.1
Base \(\Q_{7}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$

Related objects

Learn more about

Defining polynomial

\( x^{4} + x^{2} - 3 x + 5 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $4$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{7}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 7 })|$: $4$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:7.4.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{4} + x^{2} - 3 x + 5 \)
Relative Eisenstein polynomial:$ x - 7 \in\Q_{7}(t)[x]$

Invariants of the Galois closure

Galois group:$C_4$
Inertia group:Trivial
Unramified degree:$4$
Tame degree:$1$
Wild slopes:None
Galois Mean Slope:$0$
Global Splitting Model:\( x^{4} - x^{3} + x^{2} - x + 1 \)