Properties

Label 7.12.6.2
Base \(\Q_{7}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(6\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 7203 x^{4} - 16807 x^{2} + 588245 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{7}(\sqrt{*})$
Root number: $-1$
$|\Gal(K/\Q_{ 7 })|$: $12$
This field is Galois and abelian over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{*})$, 7.3.0.1, 7.4.2.2, 7.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:7.6.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{6} + 3 x^{2} - x + 5 \)
Relative Eisenstein polynomial:$ x^{2} - 7 t \in\Q_{7}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$6$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{12} - x^{11} - 25 x^{10} + 25 x^{9} + 235 x^{8} - 235 x^{7} - 1013 x^{6} + 1013 x^{5} + 1899 x^{4} - 1899 x^{3} - 1013 x^{2} + 1013 x - 181$