Properties

Label 7.12.11.2
Base \(\Q_{7}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(11\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 56 \)

Invariants

Base field: $\Q_{7}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $11$
Discriminant root field: $\Q_{7}(\sqrt{7})$
Root number: $-i$
$|\Aut(K/\Q_{ 7 })|$: $6$
This field is not Galois over $\Q_{7}$.

Intermediate fields

$\Q_{7}(\sqrt{7*})$, 7.3.2.2, 7.4.3.1, 7.6.5.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial:\( x^{12} + 56 \)

Invariants of the Galois closure

Galois group:$C_3\times D_4$ (as 12T14)
Inertia group:$C_{12}$
Unramified degree:$2$
Tame degree:$12$
Wild slopes:None
Galois mean slope:$11/12$
Galois splitting model:$x^{12} - 4 x^{11} + 5 x^{10} + 3 x^{9} - 11 x^{8} - 3 x^{7} + 35 x^{6} - 47 x^{5} + 27 x^{4} - 4 x^{3} - x^{2} - x + 1$