Properties

Label 61.2.0.1
Base \(\Q_{61}\)
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)
Galois group $C_2$ (as 2T1)

Related objects

Learn more about

Defining polynomial

\( x^{2} - x + 2 \)

Invariants

Base field: $\Q_{61}$
Degree $d$ : $2$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{61}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 61 })|$: $2$
This field is Galois and abelian over $\Q_{61}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 61 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{61}(\sqrt{*})$ $\cong \Q_{61}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x - 61 \in\Q_{61}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:Trivial
Unramified degree:$2$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:\( x^{2} - x + 2 \)