Properties

Label 5.4.2.2
Base \(\Q_{5}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more about

Defining polynomial

\( x^{4} - 5 x^{2} + 50 \)

Invariants

Base field: $\Q_{5}$
Degree $d$ : $4$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $2$
Discriminant root field: $\Q_{5}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 5 })|$: $4$
This field is Galois and abelian over $\Q_{5}$.

Intermediate fields

$\Q_{5}(\sqrt{*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{*})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{2} - 5 t \in\Q_{5}(t)[x]$

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{4} + 20 x^{2} + 50$