Properties

Label 5.15.15.2
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(15\)
Galois group $C_5^3:C_{12}$ (as 15T38)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 30 x^{12} - 60 x^{11} + 15 x^{10} + 300 x^{9} - 1200 x^{8} + 3675 x^{7} + 400 x^{6} - 5925 x^{5} + 35250 x^{4} + 101375 x^{3} + 17625 x^{2} - 1500 x + 125\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification exponent $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $1$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[5/4]$

Intermediate fields

5.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 10 x^{2} + \left(20 t^{2} + 15 t + 20\right) x + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^{2} + 2t + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_5^3:C_{12}$ (as 15T38)
Inertia group:Intransitive group isomorphic to $C_5^3:C_4$
Wild inertia group:$C_5^3$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:$[5/4, 5/4, 5/4]$
Galois mean slope:$623/500$
Galois splitting model: $x^{15} - 15 x^{13} + 90 x^{11} - 48 x^{10} - 275 x^{9} + 480 x^{8} + 450 x^{7} - 1680 x^{6} - 55 x^{5} + 2400 x^{4} - 1475 x^{3} - 1200 x^{2} + 1600 x - 512$ Copy content Toggle raw display