Properties

Label 5.15.15.14
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(15\)
Galois group $C_5^3:C_{12}$ (as 15T38)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 15 x^{12} - 30 x^{11} + 15 x^{10} + 150 x^{9} + 675 x^{8} + 1425 x^{7} - 175 x^{6} + 3450 x^{5} + 12000 x^{4} + 56000 x^{3} + 6750 x^{2} - 750 x + 125\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification exponent $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $1$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[5/4]$

Intermediate fields

5.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(5 t + 5\right) x^{2} + \left(15 t^{2} + 10 t + 20\right) x + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2t^{2} + 3t + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_5^3:C_{12}$ (as 15T38)
Inertia group:Intransitive group isomorphic to $C_5^3:C_4$
Wild inertia group:$C_5^3$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:$[5/4, 5/4, 5/4]$
Galois mean slope:$623/500$
Galois splitting model: $x^{15} - 95 x^{13} + 3365 x^{11} - 372 x^{10} - 57850 x^{9} + 13130 x^{8} + 511225 x^{7} - 157430 x^{6} - 2237924 x^{5} + 836550 x^{4} + 4192045 x^{3} - 2087150 x^{2} - 2724280 x + 1704872$ Copy content Toggle raw display