Properties

Label 5.10.13.11
Base \(\Q_{5}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(13\)
Galois group $D_5\times C_5$ (as 10T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 10 x^{5} + 5 x^{4} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification exponent $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $13$
Discriminant root field: $\Q_{5}(\sqrt{5\cdot 2})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $5$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{5}(\sqrt{5\cdot 2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{10} + 10 x^{5} + 5 x^{4} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{4} + 3$,$z^{5} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois group:$C_5\times D_5$ (as 10T6)
Inertia group:$D_5$ (as 10T2)
Wild inertia group:$C_5$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2]$
Galois mean slope:$13/10$
Galois splitting model:$x^{10} + 25 x^{8} - 55 x^{7} + 965 x^{6} + 770 x^{5} + 5595 x^{4} + 4125 x^{3} + 16325 x^{2} - 4675 x + 67915$