Properties

Label 5.10.12.13
Base \(\Q_{5}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(12\)
Galois group $D_5^2$ (as 10T9)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} - 10 x^{7} + 10 x^{5} - 25 x^{4} - 50 x^{2} + 25\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification exponent $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $1$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{5}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(5 t + 5\right) x^{2} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 3t + 3$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$D_5^2$ (as 10T9)
Inertia group:Intransitive group isomorphic to $C_5:D_5$
Wild inertia group:$C_5^2$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:$[3/2, 3/2]$
Galois mean slope:$73/50$
Galois splitting model:$x^{10} - 10 x^{7} - 10 x^{6} + 28 x^{5} + 25 x^{4} + 50 x^{3} - 190 x^{2} + 130 x - 47$